Кой процесс соответствует понятию самоорганизация. Самоорганизация систем в природе и обществе

Самоорганизация в самом общем понимании означает самодвижение, самоструктурирование, самодетерминацию (самовозникно- вение) природных, естественных систем и процессов. Обычно в качестве примера, иллюстрирующего предложенную схему самоорганизации, приводят процесс кристаллизации. «На входе» - хаотично распределенные в жидкости атомы, «на выходе» - кристалл, т.е. система объединенных связями атомов, образующих однозначную стабильную структуру. Процесс формирования системы-кристалла происходит с абсолютным выполнением условия без рулевого (без управления) - его структура определяется исключительно свойствами элементов-атомов, а процесс кристаллизации начинается спонтанно и проходит без какого-либо внешнего формообразующего вмешательства при определенных благоприятных условиях. Самоорганизацию кристаллов можно рассматривать как частный случай самопроизвольного образования систем из атомов химических элементов, т.е. все химические реакции, в результате которых образуются молекулы (структурированные системы атомов), можно рассматривать как примеры чистой самоорганизации.

Самоорганизация материальных систем в XXI в. становится одной из центральных проблем науки, решение которой берет на себя научная дисциплина - синергетика. Закономерности явлений самоорганизации, открываемые синергетикой, распространяются на все материальные системы.

Г. Хакен и И. Пригожин делают акцент прежде всего на процессуальное™ материальных систем. Все процессы, протекающие в различных материальных системах, как уже говорилось, могут быть разделены на циклические и хаотические. Основными характеристиками циклических процессов являются равновесность и линейность; главными характеристиками хаотических процессов, в которых проявляется способность к самоорганизации и возникновению диссипативных, т.е. спонтанно возникающих, структур, - неравновес- ность и нелинейность. Природные процессы принципиально неравновесны и нелинейны; именно такие процессы синергетика рассматривает в качестве предмета своего изучения.

Постулирование универсальности неравновесных и нелинейных процессов позволяет ей претендовать на статус общеметодологической дисциплины, сопоставимой с теорией систем и кибернетикой .

Возникновение синергетики знаменует начало новой научной революции, поскольку она не просто вводит новую систему понятий, но меняет стратегию научного познания, способствует выработке принципиально новой научной картины мира и ведет к новой интерпретации многих фундаментальных принципов познания. Суть предлагаемых изменений в стратегии научного познания, по мнению основателей новой науки, заключается в следующем. Традиционная наука в изучении мира делала акцент на замкнутых системах, обращая особое внимание на устойчивость, порядок, однородность. Синергетический подход акцентирует внимание ученых на открытых системах, неупорядоченности, неустойчивости, неравновесности, нелинейных отношениях.

По мнению И. Пригожина, синергетический взгляд на мир ведет к революционным изменениям в нашем понимании случайности и необходимости, необратимости природных процессов, позволяет дать принципиально новое истолкование энтропии (меры беспорядка) и радикально меняет наше представление о времени.

Если предполагается, что именно неравновесность является естественным состоянием всех процессов действительности, то естественным оказывается и стремление к самоорганизации как свойству, характерному для неравновесных процессов .

Можно утверждать, что именно синергетика в настоящее время является наиболее общей теорией самоорганизации. Она формулирует общие принципы самоорганизации, действительные для всех структурных уровней.

Проблемность позиции прошлых лет состоит в том, что мы хотели, чтобы ПС вела себя так, как живая система, но продолжали обращаться с ней, как с машиной. Настало время менять организационные представления. Организация отныне - это живая, действующая система. Все живые системы имеют такое свойство, как самоорганизация, т.е. свойство поддержания себя и совершенствования в необходимом порядке, они могут осмысленно измениться, они строят и перестраивают себя в адаптивные модели и структуры без дополнительно вводимых планов и какого-либо вмешательства. Самоорганизующиеся системы обладают способностью к непрерывному реагированию на перемены, что желал бы для себя каждый руководитель. В таких системах перемены являются движущей силой, а не угрозой. Экспериментирование выступает как норма.

Изучением систем, состоящих из большого числа частей, взаимодействующих между собой тем или иным способом, занимались и продолжают заниматься многие науки. Одни из них предпочитают делить систему на подсистемы, чтобы, изучая отдельные части, пытаться строить более или менее правдоподобные гипотезы о структуре или функционировании системы как целого. Другие изучают систему как единое целое, предавая забвению тонко настроенное взаимодействие частей. И тот, и другой подходы обладают своими преимуществами и недостатками.

Синергетика наводит мост через пропасть, отделяющую первый редукционистский подход от второго холистического. К тому же в синергетике, своего рода соединительном звене между этими двумя экстремистскими подходами, рассмотрение происходит на промежуточном уровне, и макроскопические проявления процессов, происходящих на микроскопическом уровне, возникают «сами собой», вследствие самоорганизации, без руководящей и направляющей «руки», действующей извне системы. Это обстоятельство имеет настолько существенное значение, что синергетику не зря определяют как науку о самоорганизации.

Редукционистский подход - это упрощение, сведение сложного к более простому, обозримому, понимаемому, более доступному для анализа, с основным акцентом на деталях (частях системы), сопряженное с необходимостью обработки, зачастую непосильной для наблюдателя, даже вооруженного сверхсовременной вычислительной техникой, объема информации о подсистемах, их структуре, функционировании и взаимодействии. Поэтому при этом подходе осуществляется сжатие информации до разумных пределов различными способами. Вместо большого числа факторов, от которых зависит состояние системы (так называемых компонент вектора состояния), синергетика рассматривает немногочисленные параметры порядка, от которых зависят компоненты вектора состояния системы и которые, в свою очередь, влияют на параметры порядка.

В переходе от компонент вектора состояния к немногочисленным параметрам порядка заключен смысл одного из основополагающих принципов синергетики - так называемого принципа подчинения (компонент вектора состояния параметрам порядка). Обратная зависимость параметров порядка от компонент вектора состояния приводит к возникновению того, что принято называть круговой причинностью.

Существование циклической и хаотической форм динамического развития социально-экономических систем представляет собой тот механизм, при помощи которого происходит его самоорганизация и организация.

Синергетика занимается исследованием процессов самоорганизации в системах разной природы, динамикой взаимопереходов через границу «порядок-хаос».

В соответствии с базовыми положениями синергетики ее отличительной особенностью является стихийная самоорганизация, а истинный смысл возникающих при этом кооперативных процессов заключен во внутренних причинах во многом непредсказуемой самоорганизации систем. Это причинный способ самоорганизации , открытие которого позволило Г. Хакену, И. Пригожину и представителям их школ добиться выдающихся результатов в исследовании кооперативных явлений в системах различной природы.

Однако помимо причинного в нелинейных системах следует различать и целевой (направленный) способ самоорганизации.

Самоорганизация - способность тех или иных систем к саморазвитию, самозарождению, с использованием при этом не только и не столько притока энергии, информации, вещества извне, сколько возможностей, заложенных внутри системы, т.е. своего внутреннего потенциала.

Система называется самоорганизующейся, если она без специфического воздействия извне обретает какую-либо пространственную, временную или функциональную структуру. Под специфическим воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизации система испытывает неспецифическое воздействие .

Сказанное можно дополнить следующим определением: «Самоорганизация - целенаправленный процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы».

Рассмотрим содержание развернутого определения самоорганизации:

  • объектами исследования являются открытые системы, характеризуемые интенсивным обменом веществом и энергией между подсистемами и между системой с ее окружением;
  • внешняя среда - совокупность составляющих ее (среду) объектов, находящихся в динамике. Взаимодействие исследуемых объектов в среде характеризуется как контактное взаимодействие;
  • различаются процессы организации и самоорганизации. Общим признаком для них является возрастание порядка вследствие протекания процессов. Организация в отличие от самоорганизации может характеризоваться, например, образованием однородных стабильных статических структур;
  • результатом самоорганизации становится возникновение, взаимодействие, а также взаимоСОдействие (например, кооперация) и, возможно, регенерация (восстановление, возрождение) динамических объектов (подсистем), более сложных в информационном смысле, чем элементы (объекты) среды, из которых они возникают;
  • направленность процессов самоорганизации обусловлена внутренними свойствами объектов (подсистем) в их индивидуальном и коллективном проявлении, а также воздействиями со стороны среды, в которой находится система;
  • поведение элементов (подсистем) и системы в целом существенным образом характеризуется спонтанностью - акты поведения не являются строго детерминированными;
  • процессы самоорганизации происходят в среде наряду с другими процессами, в частности противоположной направленности, и могут в отдельные фазы существования системы как преобладать над последними (прогресс), так и уступать им (регресс). При этом система в целом может иметь устойчивую тенденцию или претерпевать колебания к эволюции либо деградации и распаду. Самоорганизация может иметь в своей основе процесс преобразования или распада структуры, возникший ранее в результате процесса организации. Например, при переходе к командной форме организации труда старые структуры распадаются. Приведенное развернутое определение является необходимым шагом на пути к конкретизации содержания, которое относится к синергетике, и выработке критериев для создания самоорганизующейся среды.

Мы живем в мире, по сути, самоорганизованном, что очень четко просматривается во время катастроф, когда люди и ресурсы организуются для скоординированной и целевой работы без предварительного планирования. Такое произвольное поведение позволяет быстро и эффективно оказывать помощь на месте происшествия задолго до появления официальных служб по оказанию помощи.

Вхождение сложной системы в режим порядка - это уникальная способность живой системы строить, перестраивать и совершенствоваться. Чтобы этот процесс был постоянным и эффективным, отдельные индивиды должны обладать информацией о состоянии объекта, которая позволяет им согласовать свою работу с этой информацией. Так члены группы налаживают взаимодействие между собой. Каждый определяет свое поведение на основании полученной информации от наблюдения за ближними и на основании знания конечной цели. Из подобных элементарных условий возникает работающее общество. В этом случае самоорганизация образуется по принципу от частного взаимодействия к глобальному.

Ничто не является запланированным, непредсказуемые формы поведения возникают из взаимонаблюдения. Стаи птиц, косяки рыб, рой насекомых, пробки на дорогах - все это выглядит хорошо синхронизированным и высокоупорядоченным. Эти потоки не управляются никем, но здесь действуют несколько определенных правил, которые управляют согласованной реакцией. В этих примерах самоорганизации в природе многое нас поражает.

Могут ли социально-экономические системы быть более самоор- ганизованными? Каковы условия для самоорганизации?

Сложные системы возникают из элементарных условий. Элементарная часть (человек, предметы и средства труда) входит в состав более крупной подсистемы. Поэтому сложные организации могут основываться на изначальной простоте.

В дальнейшем организации принимают различные формы, но все они берут начало от примитивных условий. Объединение элементарных частей приводит к усложнению систем, к их развитию. Совокупность взаимосвязанных элементарных частей со временем приобретает форму, структуру. Информация фиксируется, перерабатывается, передается. Из этой бесхитростной динамики появляются разнообразные по своей структуре организации.

Способность системы к организационным изменениям определяется как освоение фирмой новых идей и моделей поведения. В этом случае организационные изменения вносят в систему беспорядок, хаос. Не внеся в организацию беспорядок, нельзя заставить живую систему меняться.

Основу явлений самоорганизации составляют процессы формирования порядка и хаоса. И порядок, и хаос формируются как результат проявления законов самоорганизации.

Самоорганизация является ключевым понятием для понимания сущности синергетики. Синергетику и определяют как науку о самоорганизации или, более развернуто, о самопроизвольном возникновении и самоподдержании упорядоченных временных и пространственных структур в открытых нелинейных системах различной природы. Таким образом, синергетика - теория самоорганизующихся динамических, открытых, нелинейных систем.

На основе многочисленных исследований были сформулированы условия самоорганизации систем (табл. 3.2):

Таблица 3.2

Самоорганизация систем в природе и обществе

Признаки

Самоорганизация

Способность систем к саморазвитию, самозарождению с использованием при этом не только и не столько притока энергии, информации, вещества извне, сколько возможностей, заложенных внутри системы, т.е. своего внутреннего потенциала

Механизм самоорганизации

Существование циклической и хаотической форм динамического развития социально-экономических систем представляет собой тот механизм, при помощи которого происходит его самоорганизация и организация

Условия самоорганизации

  • Открытость систем (открытая система постоянно осуществляет ввод и вывод вещества, энергии и информации в среду);
  • нелинейность системы, (переход системы из одного устойчивого состояния в другое);
  • неравновесность и необратимость процесса развития систем (неоднородность свойств и характеристик в частях системы, неравновесные системы необратимы);
  • продолжительная длительность процесса эволюции системы (результаты деятельности системы проявляются через такие критерии, как производство, рынок, деньги, только в течение длительного времени);
  • целенаправленная организация, согласованное действие элементов системы, адаптированное на воздействие внешней среды

Основа самоорганизации

Процессы формирования порядка и хаоса

открытость систем. Открытой называют систему, которая постоянно осуществляет ввод и вывод вещества, энергии и информации в среду. При этом надо учитывать, что открытость - понятие относительное и что «абсолютную открытость», как и «абсолютную закрытость», трудно себе представить. Поэтому всегда, когда речь идет об открытости или закрытости любой системы, подразумевается определенная преобладающая тенденция, а если бы появилась возможность существования абсолютно открытой системы, то она утеряла бы свою целостность.

Условие открытости для самоорганизации системы является необходимым, но недостаточным;

нелинейность систем. Синергетика изучает нелинейные процессы. Это означает, что возможен переход системы из одного устойчивого состояния в другое.

Итак, самоорганизующаяся система способна сама регулировать, поддерживать, изменять свое состояние благодаря открытости и нелинейности;

  • неравновесность и необратимость процесса эволюции и развития систем, который протекает с изменениями энтропии. Объясняется это тем, что равновесный процесс протекает медленно через весьма близкие друг другу равновесные состояния, что не способствует эволюции системы, так как энтропия остается неизменной. В неравновесных процессах система проходит через неравновесные состояния, характеризующиеся неоднородностью свойств и характеристик в частях системы. Неравновесные процессы необратимы;
  • продолжительность процесса эволюции системы. Это условие самоорганизации обусловлено тем, что результаты деятельности системы, например коллектива предприятия, проявляются через такие критерии, как производство, рынок, деньги, только в течение длительного времени.
  • целенаправленная организация, согласованное действие элементов системы, адаптированное на воздействие внешней среды.

Случайные отклонения параметров развития от их среднего значения (флуктуации) накапливаются и постепенно приводят систему в неустойчивое состояние. Открытость, неравновесность, необратимость и нелинейность систем может привести к разрушению прежней структуры (дезорганизации) и созданию нового спонтанного пространственно-временного порядка (самоорганизации).

Самоорганизующиеся системы обладают способностью оптимальным образом изменять свои параметрические характеристики, структуру функциональных отношений в целом в соответствии с изменяющимися внешними условиями и так, чтобы энтропия системы или уменьшалась, или оставалась неизменной, либо, в худшем случае, росла медленно. Они совершенствуют функциональные отношения между составляющими их частями, другими системами и внешней средой.

В самоорганизующихся социально-экономических системах процесс развития спонтанно направлен на повышение производительности труда и качества продукции, на повышение результативности производства при одновременном снижении уровня расходования энергии и вещества.

Динамика самоорганизующихся систем на длительную перспективу труднопредсказуема. Однако в их развитии, как бы ни менялись условия, функциональные процессы всегда направлены на самосохранение, самовоспроизведение, улучшение режима развития, уменьшение энтропии.

Для самоорганизующихся систем на любой наперед заданный момент времени уровень их организованности, упорядоченности повышается при заданных условиях развития.

Самоорганизующиеся системы развиваются за счет действия двух типов потоков вещества, энергии и информации противоположной созидательной направленности: поток вещества и энергии, формирующий систему, всегда порождает поток обратного действия. Более того, системы не могут нормально развиваться в отсутствие дезорганизующего потока. Их диалектическое противоречивое единство и обусловливает формирование и развитие саморегулирующихся целостностей. Этим же единством определяется формирование новых путей развития системы как результата взаимодействия этих разнонаправленных потоков.

Предпринимательские структуры, осуществляющие деятельность путем самоорганизации, саморегулирования проявляют большую стойкость, выживаемость и рентабельность, чем организации, регулируемые извне.

Частная фирма по своей природе является саморегулируемой системой. Наличие автоматически действующего механизма саморегулирования на уровне каждой фирмы составляет основу механизма саморегулирования экономики в целом. Государственное же регулирование лишь дополняет его. При этом если к системам, способным к саморегуляции, постоянно применять административно-командные методы - это приведет к потере потенциала и невозможности эффективного развития.

Если в организации царит однородность, равновесие, покой, то там нет подлинного развития. Длительное пребывание организации в таком состоянии ведет к дезорганизации и разрушению.

Чем больше у системы степеней свободы, тем более она способна к самоорганизации, самоусложнению и саморазвитию, повышению уровня упорядоченности и эффективности ее функционирования. В этом выражается значение формулы «порядок через хаос».

В любой ПС существует определенная доля непредсказуемости, доля энтропии. В процессе самоорганизации происходит непрерывное разрушение существующих структур (станочного парка, кадрового состава, применяемых материалов, выпускаемой продукции и т.п.), что приводит к возникновению новых. Темпы процесса разрушения старых структур имеют тенденцию к ускорению. Первичным в этом процессе является ускорение темпов обновления номенклатуры выпускаемой продукции. Многие предприятия за несколько лет полностью обновляют свой портфель заказов. Высокие темпы обновления номенклатуры выпускаемой продукции требуют адаптации других структурных образований в еще более ускоренном, опережающем темпе. Это требование относится, например, к структуре станочного парка, применяемым материалам, квалификации кадров и др.

Процесс эволюции состоит как в совершенствовании новых структур, так и (в большей степени) в замене стабильных структур более стабильными, т.е. более приспособленными к изменившимся условиям.

Появление новых структур - следствие стохастического начала. Закрепление новых структур происходит вследствие их конкуренции, т.е. отбора. Таким образом, поддержание стабильности экономической системы происходит не столько из-за стабильности элементов системы, сколько из-за выбывания менее совершенных элементов и их замещения новыми, возникшими в процессе самоорганизации. Замена одних элементов системы другими, более приспособленными к изменяющейся обстановке, происходит непрерывно.

Среди этих новых форм организации появляются более сложные, которые требуют для своего описания больших объемов информации: рост разнообразия сопровождается и ростом сложности.

Процесс самоорганизации, несмотря на его стихийность, обладает направленностью: растут разнообразие форм организации, сложность структур, объем информации, с помощью которой они могут быть описаны. Рынок выступает в качестве сложнейшей иерархически организованной системы непрерывных отбраковок старых и замещений новыми, непрерывно рождающимися структурами.

Таким образом, в последние годы наряду с организацией и управлением все большую роль и значение приобретает самоорганизация, точнее, взаимодействие ее механизма с механизмами организации и управления.

Видно, что не только «жизнь создает порядок», законы самоорганизации оказываются общими как для живой, так и для неживой природы. Однако каким же образом из бесструктурной субстанции самообразуются временны́е и пространственные упорядоченные структуры? Чтобы это понять, необходимо выяснить, что общего во всех системах, способных к самоорганизации.

1. Прежде всего следует ответить на вопрос, не противоречит ли возникновение порядка из хаоса закону возрастания энтропии, в соответствии с которым энтропия - мера беспорядка - непрерывно возрастает. Обратите внимание на то, что этот закон сформулирован для замкнутых систем, т. е. для систем, не взаимодействующих каким-либо образом с окружением. Все приведенные ранее примеры относятся к открытым системам , т. е. к системам, обменивающимся с окружением энергией и веществом.

Понятно, что можно выделить замкнутую систему, в которой происходит самоорганизация. Например, представим себе изолированный от излучения звезд космический корабль, в котором произрастают растения. Очевидно, что в любой такой замкнутой системе можно выделить подсистему, в которой именно и происходит самоорганизация и энтропия которой убывает, в то время как энтропия замкнутой системы в целом возрастает в полном соответствии со вторым началом термодинамики .

Процессы самоорганизации происходят в открытых системах. Если самоорганизация происходит в замкнутой системе, то всегда можно выделить открытую подсистему, в которой происходит самоорганизация, в то же время в замкнутой системе в целом беспорядок возрастает.

2. Второй отличительной особенностью систем, способных к самоорганизации, является неравновесное, неустойчивое состояние, в котором они находятся.

Так, внешнее воздействие - нагревание сосуда приводит к разнице температур в отдельных макроскопических областях жидкости, возникают так называемые ячейки Бенара.

Состояние системы, далекой от равновесия, является неустойчивым в отличие от состояния системы, близкой к равновесию, и именно в силу этой неустойчивости и возникают процессы, приводящие к возникновению структур.

Самоорганизация происходит в системах, состояние которых в данный момент существенно отличается от статистического равновесия.

3. Еще одна особенность способных к самоорганизации систем - большое число частиц, составляющих систему. Дело в том, что только в системах с большим числом частиц возможно возникновение флуктуаций - малых случайных возмущений, неоднородностей. Именно флуктуации способствуют переходу системы из неустойчивого состояния в более упорядоченное устойчивое состояние.

Наблюдать флуктуации достаточно сложно; как правило, они не проявляют себя в макроскопическом мире, где работают наши органы чувств.

Можно привести пример возникновения шумов в громкоговорителе при отсутствии передачи. Эти шумы появляются вследствие хаотического движения электронов в элементах радиотехнического устройства. Хаотическое движение электронов приводит к флуктуациям электрического тока, которые после усиления и преобразования в звук мы слышим.

Самоорганизация возможна лишь в системах с большим числом частиц, составляющих систему.

4. Процессы самоорганизации описываются достаточно сложными математическими уравнениями. Особенностью таких уравнений и соответственно систем, которые они описывают, является нелинейность . Это свойство, в частности, приводит к тому, что малые изменения в системе в какой-то момент времени могут оказать существенное влияние на дальнейшее развитие системы во времени. Именно в силу этого свойства процессы самоорганизации во многом определяются случайными факторами и не могут быть однозначно предсказаны.

Эволюция систем, способных к самоорганизации, описывается нелинейными уравнениями.

Рассмотренные выше организационные процессы, ведущие к преобразованию систем, могут осуществляться в двух фор­мах: целенаправленной сознательной деятельности человека (организации) и самоорганизации.

Выделяются три типа процессов самоорганизации:

1) процессы, благодаря которым происходит самозарожде­ние организационной формы, т. е. возникновение каче­ственно нового целостного формирования из некоторой совокупности объектов определенного уровня;

2) процессы, поддерживающие определенный уровень организационной формы при изменении внешних и внутренних условий ее функционирования.

3) процессы совершенствования и саморазвития организа­ционной формы, которые способны накапливать и ис­пользовать прошлый опыт.

Проблема самоорганизации стала интенсивно разраба­тываться в кибернетике, в частности, в работах Н. Винера, Дж. фон Неймана, У. Эшби и др. Эти авторы связывали само­организацию со свойством управления и делали акцент на про­блеме организации. Нетрудно убедиться, что самоорганизация здесь явно или неявно предполагает наличие либо внешнего агента (человека-организатора), либо цели, которая задается самоорганизующейся системе человеком.

Только в синергетике разработка проблемы самоорганиза­ции вносит новый вклад в развитие теории организации, рас­сматривая вопрос об организации вне связи с управлением и акцентируя внимание на проблеме связи понятий организации и самоорганизации, порядка и беспорядка, энтропии и инфор­мации.

Эта точка зрения, на наш взгляд, более продуктивна, так как, раскрывая содержание понятия «самоорганизация», мы обогащаем понятие «организация». Организацию можно по­нять и определить через самоорганизацию, но не наоборот. Вполне возможно, что многочисленные попытки построения общей теории организации до сих пор не имеют успеха, в том числе из-за недостаточного внимания к феномену самоорга­низации. Синергетика ставит перед собой задачу не только изучения данного феномена и максимизации (минимизации) синергетических эффектов, но и управления процессами са­моорганизации. Термин «управляемое развитие» должен быть ■ заменен термином «направляемое развитие».

Существует точка зрения, согласно которой в формирова­нии организационных форм роль внешней среды доминиру­ет, т. е. само возникновение материальных структур почти пол­ностью определяется внешними факторами, поэтому рассмат­ривать самоорганизацию лишь как внутреннее свойство системы в принципе неверно: самоорганизация невозможна без внешней среды.

Самоорганизация не является локальным процессом, про­текающим независимо от внешней среды. Но хотя самоорга­низация и зависит от типа внешней среды, от истории разви­тия и возможных форм ее реализации, хотя внешние условия играют важную роль в выборе поведения материальных си­стем, последнее невозможно объяснить, исходя только из внеш­них факторов как определяющих.



Самоорганизацию целесообразно подразделять на самоор­ганизацию естественных и самоорганизацию искусственных систем. Очевидно, что до появления человека существовала естественная самоорганизация в «чистом» виде. И сейчас та­кие процессы самоорганизации происходят в природе естест­венным путем. К самоорганизации искусственных систем от­носятся процессы, которые совершаются в самоорганизу­ющихся системах, созданных руками человека. Однако вполне очевидно, что природа процессов самоорганизации не зависит от типа систем, и естественные предпосылки ее возникнове­ния, а также формализованный аппарат описания самого про­цесса идентичны.

Следует отметить, что не только в искусственных, но и во многих естественных системах человек способен оказывать влияние на управляющие параметры и «стохастические» силы и этим в известной мере предопределять момент изменения состояния системы (точка бифуркации) и соответственно сце­нарий развития самоорганизующейся системы. В этом случае можно говорить о размывании границы между процессами организации и самоорганизации. По этой же причине, на наш взгляд, нельзя говорить и о противопоставлении понятий «организация» и «самоорганизация», как нельзя ни сводить соотношение между этими понятиями к формально-логиче­скому пониманию «шире - уже» (оно носит сложный харак­тер), ни противопоставлять их. Это два взаимодополняющих процесса. Примером тому может служить демографическая си­стема, в которой наиболее ярко проявляется диалектическое единство организации и самоорганизации.

Раскрытие принципов самоорганизации зависит от пони­мания и адекватного определения понятия самоорганизации. Как следует из литературных источников, самоорганизация - это понятие для обозначения процесса структурообразования в результате действия внутренних детерминантов при специ­фических внешних условиях. При этом причиной возникно­вения структур являются внутренние детерминанты, внутрен­ние свойства системы, внешние же условия (факторы) - всего лишь поводом.

Таким образом, многие авторы при определении понятия самоорганизации совершенно верно указывают в качестве определяющих внутренние причины, однако при этом игнорируют (или опускают как нечто несущественное) факт откры­тости системы для внешних инициирующих воздействий. Вместе с тем некоторые философы отдают предпочтение вне­шним детерминантам, т. е. считают, что роль внешней среды доминирует. В предложенном определении понятия самоорга­низации наблюдается сближение двух точек зрения, но имен­но такой подход к пониманию самоорганизации представля­ется наиболее перспективным.

Самоорганизация в синергетическом понимании - это процесс спонтанного образования высокоупорядоченных по времени и (или) в пространстве устойчивых структур в гетеро­генных открытых неравновесных динамических системах лю­бой природы вследствие внутрисистемных закономерностей при индуцировании внешними воздействиями.

Понятие самоорганизации тесно связано с более фундамен­тальными понятиями порядка и беспорядка. Проблема «поря­док - беспорядок» привлекает внимание исследователей раз­личных областей современной науки. Эти понятия, впервые возникшие в физике, используются для изучения широкого круга явлений не только в естественных, технических, но и в общественных науках, что говорит о необходимости последо­вательно развивать и уточнять представление о порядке и бес­порядке в структуре материи.

Понятия «порядок» и «беспорядок» наряду с понятием «са­моорганизация» являются ключевыми в синергетике, исследу­ющей не только процессы образования устойчивых макроско­пических структур в сложных неравновесных открытых дина­мических системах любой природы, как во времени, так и в пространстве, но и обратное явление - переход от упорядо­ченного состояния к хаосу. Самоорганизация и хаос, или, в более общем смысле, порядок и беспорядок, - это основ­ные структурные характеристики материи.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

1. Теория самоорганизации

Заключение

Список литературы

Введение

Самоорганизация - целенаправленный процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Свойства самоорганизации обнаруживают объекты различной природы: клетка, организм, биологическая популяция, биогеоценоз, человеческий коллектив Дубнищева Т.Я., Пигарев А.Ю. Современное естествознание. Новосибирск: ООО «Издательство ЮКЭА», 2006. С. 122. .

Основной критерий рaзвития сaмооргaнизующихся систем - увеличение зaпaсa свободной энергии, которaя может быть высвобожденa для совершения полезной рaботы. При этом aбсолютно не вaжнa природa сaмой системы - будь то примитивнaя тепловaя мaшинa или экономикa огромной стрaны - если системa нерaвновеснa и обменивaется веществом и энергией с окружaющей средой, для нее спрaведливы все нaиболее общие зaкономерности рaзвития. К примеру в привычных терминaх мaрксистской политэкономии укaзaнный критерий рaзвития формулируется кaк зaкон прибaвочной стоимости или добaвочного продуктa - дело лишь в обознaчениях, a по смыслу эти понятия изоморфны. И если в дaльнейшем кaкие-либо сугубо экономические кaтегории, трaктуемые с энерговещественной точки зрения, покaжутся неоднознaчными или дaже спорными, стоит зaдумaться - a столь ли всеобщей является нaукa экономикa, может в ней покудa не открыты ряд фундaментaльных зaконов?

Цель работы - рассмотреть процессы самоорганизации.

Задачи работы - определить теорию самоорганизации; охарактеризовать неравновесные процессы и открытые системы; изучить самоорганизацию диссипативных структур.

1. Теория самоорганизации

Небезызвестный Г.Беккер недaвно получил Нобелевскую премию зa теорию экономической мотивaции социaльных явлений, однaко те же сaмые мотивaции элементaрно следуют из принципa нaименьшего действия, известного в физике кaк минимум сотню лет.

Возврaщaясь ко всеобщим энерговещественным зaкономерностям прогрессирующего рaзвития, отметим, что в сопряженной системе рост свободной энергии возможен кaк зa счет внешних фaкторов - экстенсивный путь рaзвития, тaк и зa счет внутренних - интенсивный. В реaльных условиях, когдa мощность сопрягaющего потокa конечнa, экстенсивное рaзвитие всегдa имеет предел, после которого для продолжения рaзвития системе необходимо переходить нa интенсивный путь, связaнный с ростом эффективности использовaния получaемой энергии, увеличением собственого к.п.д., что будет ознaчaть концентрировaние энергии в единице объемa. Если для экстенсивного пути рaзвития хорошим aнтропогенным aнaлогом является нaрaщивaние мощности мускулaтуры, то для интенсивного весьмa покaзaтельным будет следующий бытовой пример. Мы приклaдывaем примерно рaвные мышечные усилия при рaсчесывaнии волос и при бритье, однaко в последнем случaе тa же энергия концентрируется нa микронной поверхности и создaет дaвление порядкa сотен aтмосфер, что сопостaвимо с лучшими промышленными прессaми и во много крaт превышaет физические возможности человекa. Концентрировaннaя энергия выполняет большую рaботу, нежели неконцентрировaннaя - в этом суть интенсивного этaпa рaзвития, нa котором сегодня нaходится человечество.

Однaко, и интенсивный путь рaзвития не может быть бесконечным - при к.п.д., близком к единице, он зaвершaется - системе рaзвивaться дaльше просто некудa. В этом состоянии выбор невелик - либо дегрaдировaть, исчерпaв весь зaпaс ресурсa , либо зaмкнуть энерговещественные циклы и функционировaть рaвновесно. В результaте подобного естественного отборa сохрaняются лишь те системы, которые функционируют нa принципaх зaмкнутых циклов - этот тип рaзвития получил нaзвaние экологического. Следует отметить, что исследовaние всех в принципе возможных способов обменa веществом и энергией в aбстрaктной сaмооргaнизующейся системе привело к структуре, с точностью до мелких детaлей совпaдaющей со структурой экосистем, определенной в экологии эмпирически. Это является дополнительным подтверждением необходимости переориентaции техносферы нa биологические принципы функционировaния, свойственные именно экологическому типу рaзвития.

Выводы очевидны. Первый зaключaется в неизбежности переходa любой рaзвивaющейся мaтериaльной системы от экстенсивного пути рaзвития к интенсивному, a зaтем и экологическому. Сегодня по всем признaкaм мы нaходимся нa этaпе переходa к интенсивной модели, и несмотря нa все рaзговоры о постиндустриaльной эпохе, пройдет еще немaло времени до того моментa, когдa человечество зaмкнет циклы. Второй вывод отдaет нaлетом фaтaльности - с энерговещественной точки зрения любое рaзвитие огрaничено. Дaже если удaстся решить проблему термоядерного синтезa, то aссимиляционнaя способность среды все-рaвно не позволит человечеству рaзвивaться беспредельно и венцом его рaзвития по-прежнему будут зaмкнутые энерговещественные циклы.

Ознaчaет ли это конец истории? Безусловно нет, и здесь будет уместнa следующaя эволюционнaя aнaлогия. При формировaнии биосферы вся солнечнaя энергия внaчaле шлa нa увеличение биомaссы. Когдa же циклы зaмкнулись и биомaссa плaнеты стaбилизировaлaсь, стaло можно вести речь о том, что вся поступaющaя энергия прaктически целиком преврaщaлaсь в информaцию - рaзнообрaзие биоты, способов ее существовaния, первичных нaвыков, позже - непосредственно в человеческие знaния. То есть суть экологического пути рaзвития - опосредовaнaя трaнсформaция энергии в информaцию, знaния. Прогресс и дaльнейшее рaзвитие безусловно будут, но в принципиaльно иной - интеллектуальной сфере. Переход к этому этaпу рaзвития ознaменуется мaсштaбным мировым кризисом, ниспровергaющим сложившуюся систему мaтериaльных ценностей и утверждaющим в кaчестве основной ценности внутренний мир человекa, его индивидуaльный и коллективный рaзум. Все мaтериaльное, о чем тaк печется современный человек, будет игрaть вспомогaтельную роль, кaкую выполняет, нaпример, электричество для компьютерa, нa первый плaн выйдет информaция, знaния, смысл Моисеев Н. Экология М.: Молодая гвардия, 1988. С. 141. .

2. Неравновесные процессы и открытые системы

Кристаллы - упорядоченные равновесные структуры. В природе существуют и иные упорядоченные структуры, которые возникают в диссипативных системах. Диссипативная система является подсистемой больших неравновесных термодинамических систем.

Циркуляционные потоки в атмосфере и океанах Земли - под действием солнечного излучения - самоорганизация на Земле.

2. Ячейки Бенара - самоорганизация в физических явлениях

3. Химическая реакция Белоусова-Жаботинского - самоорганизация в химии

Под воздействием BrO3-, H+ в растворе происходят реакции:

Ce3+-> Сe4+ - окисление, цвет раствора голубой.

Сe4+ -> Сe3+ - восстановление, цвет раствора красный. Таким образом, имеется автоколебательный процесс изменения концентрации четырехвалентного церия с одновременным варьированием цвета

На поверхности раствора появляются поверхностные волны (химические спиральные волны)

4. Динамика популяций хищников и их жертв - самоорганизация в биологии.

Неравновесные процессы с возникновением в системах упорядоченных структур - диссипативных структур. Самоорганизация не связана с особым классом веществ, но она существует лишь в специальных системах, удовлетворяющих условиям:

а) открытые системы, т.е. открытые для притока энергии (вещества) извне;

б) макроскопические системы, т.е. системы описываются нелинейными уравнениями.

Следует также отметить, что диссипативные структуры являются устойчивыми образованиями, и их устойчивость определяется устойчивостью внешнего источника энергии Яблоков А.В. Актуальные проблемы эволюционной теории. М.: Наука, 1966. С. 104-105. .

3. Самоорганизация диссипативных структур

Самоорганизующимися процессами называют процессы, при которых возникают более сложные и более совершенные структуры. Это определение позволяет выделить самоорганизацию как один из возможных путей эволюции и отнести этот процесс к условиям, далеким от термодинамического равновесия. Эволюция может приводить и к деградации. Так, в закрытых системах, когда движущая сила процесса - стремление системы к минимуму свободной энергии, достигаемое равновесное состояние является наиболее хаотическим состоянием среды. Если же эволюция системы контролируется минимумом производства энтропии (неравновесные условия), происходит самоорганизация динамических структур, названных диссипативными. К диссипативным структурам относятся пространственные, временные или пространственно-временные структуры, которые могут возникать вдали от равновесия в нелинейной области, если параметры системы превышают критические значения. Диссипативные структуры могут перейти в состояние термодинамического равновесия только путем скачка (в результате неравновесного фазового перехода). Основные их свойства следующие:

они образуются в открытых системах, далеких от термодинамического равновесия, в результате флуктуации до макроскопического уровня;

их самоорганизация происходит в результате экспорта энтропии;

возникновение пространственного или временного порядка аналогично фазовому переходу;

переход в упорядоченное состояние диссипативной системы происходит в результате неустойчивости предыдущего неупорядоченного состояния при критическом значении некоторого параметра, отвечающем точке бифуркации;

в точке бифуркации невозможно предсказать, в каком направлении будет развиваться система, станет ли состояние хаотическим или она перейдет на новый, более высокий уровень упорядоченности.

Таким образом, диссипативные структуры - это высокоупорядоченные самоорганизующиеся образования в системах, далеких от равновесия, обладающие определенной формой и характерными пространственно-временными размерами, они устойчивы относительно малых возмущений. Важнейшие характеристики диссипативных структур - время жизни, область локализации и фрактальная размерность. Диссипативные структуры отличаются от равновесных тем, что для своего существования они требуют постоянного притока энергии извне, так как по определению, их самоорганизация связана с обменом энергией и веществом с окружающей средой.

Под диссипативной системой понимают систему, полная механическая энергия которой при движении убывает, переходя в другие формы, например в тепло. Соответственно диссипация энергии есть переход части энергии упорядоченного процесса в энергию неупорядоченного процесса, а в конечном итоге - в теплоту.

Процесс перехода "устойчивость-неустойчивость-устойчивость" следующий. Первоначально устойчивая диссипативная структура, достигая в процессе эволюции системы порога неустойчивости, начинает осциллировать, а возникающие в ней флуктуации приводят к самоорганизации новой, более устойчивой на данном иерархическом уровне диссипативной структуры.

Одним из типичных примеров самоорганизации диссипативных структур является переход ламинарного течения жидкости в турбулентное. До недавнего времени он отождествлялся с переходом к хаосу.

Таким образом, гидродинамическая неустойчивость при переходе ламинарного течения в турбулентное связана с образованием динамических диссипативных структур в виде вихрей Дубнищева Т.Я. Концепции современного естествознания. Новосибирск: ООО «Издательство ЮКЭА», 2004 .

Заключение

Разработкой теории самоорганизации занимаются несколько научных дисциплин:

1. Термодинамика неравновесных (открытых) систем.

2. Синергетика.

3. Теория катастроф Рубин А.Б. Термодинамика биологических процессов. М.: Изд-во МГУ, 1984. С. 180. .

Образование упорядоченных структур, происходящие не за счет действия внешних сил (факторов), а в результате внутренней перестройки системы, называется самоорганизацией. Самоорганизация - фундаментальное понятие, указывающее на развитие в направлении от менее сложных объектов к более сложным и упорядоченным формам организации вещества.

В каждом конкретном случае самоорганизация проявляется по-разному, это зависит от сложности и природы изучаемой системы.

Процессы самоорганизации происходят в среде наряду с другими процессами, в частности противоположной направленности, и могут в отдельные фазы существования системы как преобладать над последними (прогресс), так и уступать им (регресс). При этом система в целом может иметь устойчивую тенденцию или претерпевать колебания к эволюции либо деградации и распаду.

Самоорганизация может иметь в своей основе процесс преобразования или распада структуры, возникшей ранее в результате процесса организации.

Список литературы

1. Дубнищева Т.Я. Концепции современного естествознания. Новосибирск: ООО «Издательство ЮКЭА», 2004.

2. Дубнищева Т.Я., Пигарев А.Ю. Современное естествознание. Новосибирск: ООО «Издательство ЮКЭА», 2006.

3. Моисеев Н. Экология М.: Молодая гвардия, 1988.

4. Рубин А.Б. Термодинамика биологических процессов. М.: Изд-во МГУ, 1984.

5. Яблоков А.В. Актуальные проблемы эволюционной теории. М.: Наука, 1966.

Подобные документы

    Дриопитеки как животные предки человека. Представители человеческой линии эволюции - австралопитеки. Эволюция рода человек. Самоорганизация как основа эволюции. Основные условия и положения самоорганизации систем. Две теории о происхождении материков.

    контрольная работа , добавлен 10.08.2009

    Кибернетика и ее принципы. Самоорганизующиеся системы. Связь кибернетики с процессом самоорганизации. Синергетика как новое направление междисциплинарных исследований. Отличие синергетики от кибернетики. Структурные компоненты процесса самоорганизации.

    реферат , добавлен 09.09.2008

    Происхождение и структурирование Вселенной. Эволюционные процессы в нашей галактике. Формирование Солнечной системы, возникновение Земли. Зарождение и эволюция жизни на Земле. Самоорганизация человеческого общества. Эволюция человеческого общества.

    реферат , добавлен 27.12.2016

    Физический смысл возрастания энтропии. Характеристика самоорганизации в диссипативных структурах. Особенности эволюции в социальных и гуманитарных системах. Сущность процессов взаимопревращения различных видов энергии. Термодинамическое равновесие.

    контрольная работа , добавлен 19.04.2015

    Характеристики самоорганизующихся систем. Открытость. Нелинейность. Диссипативность. Системная модель мира. Самоорганизация и эволюция сложных систем, далеких от равновесия. Основы теории самоорганизации систем. Синергетическая картина мира.

    реферат , добавлен 18.11.2007

    Синергетика как новое направление междисциплинарных исследований и новое миропонимание. Основные этапы развития синергетики: термины, понятия и категориальный аппарат, уровни самоорганизации материи, концепция развития. Диалектика эволюции живой природы.

    курсовая работа , добавлен 09.06.2010

    Исторические этапы и структура процессов эволюции. Суть теории бифуркации в синергетике. Кризис современной цивилизации и пути выхода. Синергетика как составляющая научной картины мира. Идея самоорганизации системы. Эволюционно-синергетическая концепция.

    презентация , добавлен 22.11.2011

    Принципы осмысления действительности. Принципы нелинейной термодинамики неравновесных процессов в синергетике. Синергетика как научная теория о самоорганизации в природе и обществе как открытых системах. Катастрофы и бифуркации синергетической системы.

    реферат , добавлен 24.06.2010

    Теория самоорганизации в современном естествознании. Энгельс о гипотезе тепловой смерти Вселенной и превращении форм движения. Второй закон термодинамики - закон деградации энергии. Принцип существования энтропии. Необратимость природных процессов.

    реферат , добавлен 02.04.2011

    Изучение эволюции биосферы как процесса самоорганизации в открытой неравновесной системе планетарного масштаба. Определение сути и главной задачи экологии. Основы целостного учения Вернадского о биосфере. Роль человека в современном состоянии биосферы.

Жизнь создает порядок.
Порядок же бессилен создать жизнь
А. де Сент-Экзюпери

Какими характерными свойствами обладают системы, способные к самоорганизации? Каков механизм самоорганизации?

Урок-лекция

Из примеров, уже рассмотренных нами, видно, что не только «жизнь создает порядок», законы самоорганизации оказываются общими как для живой, так и для неживой природы. Однако каким же образом из бесструктурной субстанции самообразуются временные и пространственные упорядоченные структуры? Чтобы это понять, необходимо выяснить, что общего во всех системах, способных к самоорганизации.

Мориц Эшер. Предел - круг

СВОЙСТВА СИСТЕМ, СПОСОБНЫХ К САМООРГАНИЗАЦИИ.

1. Прежде всего следует ответить на вопрос, не противоречит ли возникновение порядка из хаоса закону возрастания энтропии, в соответствии с которым энтропия - мера беспорядка - непрерывно возрастает. Обратите внимание на то, что этот закон сформулирован для замкнутых систем, т. е. для систем, не взаимодействующих каким-либо образом с окружением. Все приведенные ранее примеры относятся к открытым системам , т. е. к системам, обменивающимся с окружением энергией и веществом.

Понятно, что можно выделить замкнутую систему, в которой происходит самоорганизация. Например, представим себе изолированный от излучения звезд космический корабль, в котором произрастают растения. Очевидно, что в любой такой замкнутой системе можно выделить подсистему, в которой именно и происходит самоорганизация и энтропия которой убывает, в то время как энтропия замкнутой системы в целом возрастает в полном соответствии со вторым началом термодинамики.

2. Второй отличительной особенностью систем, способных к самоорганизации, является неравновесное, неустойчивое состояние, в котором они находятся.

Процессы самоорганизации происходят в системах. Если самоорганизация происходит в замкнутой системе, то всегда можно выделить открытую подсистему, в которой происходит самоорганизация, в то же время в замкнутой системе в целом беспорядок возрастает.

Так, внешнее воздействие - нагревание сосуда приводит к разнице температур в отдельных макроскопических областях жидкости, возникают так называемые ячейки Бенара (см. рис. 79).

Самоорганизация происходит в системах, состояние которых в данный момент существенно отличается от статистического равновесия.

Состояние системы, далекой от равновесия, является неустойчивым в отличие от состояния системы, близкой к равновесию, и именно в силу этой неустойчивости и возникают процессы, приводящие к возникновению структур.

3. Еще одна особенность способных к самоорганизации систем - большое число частиц, составляющих систему. Дело в том, что только в системах с большим числом частиц возможно возникновение флуктуаций - малых случайных возмущений, неоднородностей. Именно флуктуации способствуют переходу системы из неустойчивого состояния в более упорядоченное устойчивое состояние.

Самоорганизация возможна лишь в системах с большим числом частиц, составляющих систему.

Наблюдать флуктуации достаточно сложно; как правило, они не проявляют себя в макроскопическом мире, где работают наши органы чувств.

Можно привести пример возникновения шумов в громкоговорителе при отсутствии передачи. Эти шумы появляются вследствие хаотического движения электронов в элементах радиотехнического устройства. Хаотическое движение электронов приводит к флуктуациям электрического тока, которые после усиления и преобразования в звук мы слышим.

4. Процессы самоорганизации описываются достаточно сложными математическими уравнениями. Особенностью таких уравнений и соответственно систем, которые они описывают, является нелинейность . Это свойство, в частности, приводит к тому, что малые изменения в системе в какой-то момент времени могут оказать существенное влияние на дальнейшее развитие системы во времени. Именно в силу этого свойства процессы самоорганизации во многом определяются случайными факторами и не могут быть однозначно предсказаны.

Эволюция систем, способных к самоорганизации, описывается нелинейными уравнениями.

КАК ПРОИСХОДИТ САМООРГАНИЗАЦИЯ. Каким же образом происходят процессы самоорганизации? Строгое описание, как уже говорилось, требует применения сложного математического аппарата. Однако на качественном уровне эти процессы можно достаточно просто объяснить.

Простейший эксперимент можно осуществить, имея усилитель (например, магнитофон) и поднося микрофон к громкоговорителю. При этом может возникнуть гудение или свист, обусловленные автогенерацией электрического сигнала, т. е. спонтанным возникновением электромагнитных колебаний.

Данный пример иллюстрирует процесс самоорганизации с образованием временных структур. Однако аналогично объясняется и образование пространственных структур. Рассмотрим простейший пример с образованием ячеек Бенара.

При нагревании жидкости возникает перепад температур между нижними и верхними слоями жидкости. Нагреваемая жидкость расширяется, ее плотность уменьшается, и нагретые молекулы устремляются вверх. Возникают хаотические потоки - флуктуации движения жидкости. Пока разность температур нижнего и верхнего уровней жидкости невелика, жидкость находится в устойчивом состоянии, и эти флуктуации не приводят к макроскопическому изменению структуры жидкости. При достижении определенного порога (определенной разности температур между верхними и нижними слоями) бесструктурное состояние жидкости становится неустойчивым, флуктуации разрастаются и в жидкости образуются цилиндрические ячейки. В центральной области цилиндра жидкость поднимается, а вблизи вертикальных граней - опускается (рис. 81). В поверхностном слое жидкость растекается от центра к краям, в придонном - от границ цилиндров к центру. В результате в жидкости образуются упорядоченные конвекционные потоки.

Рис. 81. Конвекционные потоки в ячейках Бенара (пунктиром обозначены ячейки, сплошной линией - конвекционные потоки)

Структуры в системе возникают, когда нелинейные эффекты, определяющие эволюцию и обусловленные внешним воздействием на систему, становятся достаточными для разрастания флуктуаций, присущих таким системам. В результате разрастания флуктуаций система переходит из неустойчивого бесструктурного состояния в устойчивое структурированное состояние.

Объяснение механизма самоорганизации, конечно же, не может предсказать какие-либо количественные характеристики образующихся структур, например частоту генерации или форму и размеры ячеек Бенара. Математическое описание подобных процессов является непростой задачей. Однако качественные особенности механизмов самоорганизации можно сформулировать достаточно просто.

Образование структур всегда связано со случайными процессами, поэтому при самоорганизации, как правило, происходит спонтанное понижение симметрии, а также имеют место бифуркации , т. е. неоднозначное развитие различных процессов. В точках бифуркации под воздействием незначительных факторов система выбирает один из нескольких возможных путей развития.

Рассмотрим биологический процесс - морфогенез. В качестве примера нарушения симметрии в живой природе, возникновение тканей и органов, создание всей сложной структуры организма в процессе его индивидуального развития. Так же как и в эволюции физических систем, в развитии зародыша возникают последовательные нарушения симметрии. Исходная яйцеклетка в первом приближении имеет форму шара. Эта симметрия сохраняется на стадии бластулы, когда клетки, возникающие в результате деления, еще не специализированы.

Далее сферическая симметрия нарушается и сохраняется лишь аксиальная (цилиндрическая) симметрия. На стадии гаструлы нарушается и эта симметрия - образуется сагиттальная плоскость, отделяющая брюшную сторону от спинной. Клетки дифференцируются, и появляется три типа тканей: эндодерма, эктодерма и мезодерма. Затем процесс роста и дифференцирования продолжается.

Нарушения симметрии в ходе развития зародыша возникают спонтанно в результате неустойчивости симметричного состояния. При этом появление новой формы и дифференцирование сопровождают друг друга. Экспериментальные наблюдения показали, что развитие организма происходит как бы скачками. Этапы быстрых превращений, зарождения новой фазы сменяются плавными стадиями.

Таким образом, в ходе морфогенеза реализуется определенная последовательность бифуркаций, развитие происходит через фазы неустойчивостей. Именно в это время изменение управляющих (определяющих эволюцию) параметров, т. е. химических свойств окружающей среды, может эффективно воздействовать на формирование зародыша, искажая его нормальное развитие. Здесь существенную опасность представляют вещества, активно влияющие на биохимические процессы при морфогенезе.

  • В § 68 приведены примеры возникновения различных структур в процессах самоорганизации. Попробуйте объяснить, какие флуктуации приводят при своем разрастании к образованию тех или иных структур.
  • Основной естественно-научной гипотезой, объясняющей возникновение жизни на Земле, является гипотеза самоорганизации. Земля находится далеко от Солнца и других планет. Почему ее нельзя считать замкнутой системой?


Copyright © 2024 Образовательный портал - HappyWorldSchool.