Транспорт газов в организме. Особенности дыхательной системы человека

Оглавление темы "Вентиляция легких. Перфузия легких кровью.":
1. Вентиляция легких. Вентиляция кровью легких. Физиологическое мертвое пространство. Альвеолярная вентиляция.
2. Перфузия легких кровью. Влияние гравитации на вентиляцию легких. Влияние гравитации на перфузию легких кровью.
3. Коэффициент вентиляционно-перфузионных отношений в легких. Газообмен в легких.
4. Состав альвеолярного воздуха. Газовый состав альвеолярного воздуха.
5. Напряжение газов в крови капилляров легких. Скорость диффузии кислорода и углекислого газа в легких. Уравнение Фика.

7. Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.
8. Углекислый газ. Транспорт углекислого газа.
9. Роль эритроцитов в транспорте углекислого газа. Эффект Холдена..
10. Регуляция дыхания. Регуляция вентиляции легких.

Кровообращение выполняет одну из важнейших функций переноса кислорода от легких к тканям, а углекислого газа - от тканей к легким. Потребление кислорода клетками тканей может изменяться в значительных пределах, например при переходе от состояния покоя к физической нагрузке и наоборот. В связи с этим кровь должна обладать большими резервами, необходимыми для увеличения ее способности переносить кислород от легких к тканям, а углекислый газ в обратном направлении.

Транспорт кислорода.

При 37 С растворимость 02 в жидкости составляет 0,225 мл л-1 кПа-1 (0,03 мл/л/мм рт. ст.). В условиях нормального парциального давления кислорода в альвеолярном воздухе, т. е. 13,3 кПа или 100 мм рт.ст., 1 л плазмы крови может переносить только 3 мл 02, что недостаточно для жизнедеятельности организма в целом. В покое в организме человека за минуту потребляется примерно 250 мл кислорода. Чтобы тканям получить такое количество кислорода в физически растворенном состоянии, сердце должно перекачивать за минуту огромное количество крови. В эволюции живых существ проблема транспорта кислорода была более эффективно решена за счет обратимой химической реакции с гемоглобином эритроцитов. Кислород переносится кровью от легких к тканям организма молекулами гемоглобина, которые содержатся в эритроцитах.

Гемоглобин способен захватывать кислород из альвеолярного воздуха (соединение называется ок-сигемоглобином) и освобождать необходимое количество кислорода в тканях. Особенностью химической реакции кислорода с гемоглобином является то, что количество связанного кислорода ограничено количеством молекул гемоглобина в эритроцитах крови. Молекула гемоглобина имеет 4 места связывания с кислородом, которые взаимодействуют таким образом, что зависимость между парциальным давлением кислорода и количеством переносимого кислорода с кровью имеет S-образную форму, которая носит название кривой насыщения или диссоциации оксигемоглобина (рис. 10.18). При парциальном давлении кислорода 10 мм рт. ст. насыщение гемоглобина кислородом составляет примерно 10 %, а при Р02 30 мм рт. ст. - 50-60 %. При дальнейшем увеличении парциального давления кислорода от 40 мм рт. ст. до 60 мм рт. ст. происходит уменьшение крутизны кривой диссоциации оксигемоглобина и процент его насыщения кислородом возрастает в диапазоне от 70-75 до 90 % соответственно. Затем кривая диссоциации оксигемоглобина начинает занимать практически горизонтальное положение, поскольку увеличение парциального давления кислорода с 60 до 80 мм рт. ст. вызывает прирост насыщения гемоглобина кислородом на 6 %. В диапазоне от 80 до 100 мм рт. ст. процент образования оксигемоглобина составляет порядка 2. В результате кривая диссоциации оксигемоглобина переходит в горизонтальную линию и процент насыщения гемоглобина кислородом достигает предела, т. е. 100. Насыщение гемоглобина кислородом под влиянием Р02 характеризует своеобразный молекулярный «аппетит» этого соединения к кислороду.

Значительная крутизна кривой насыщения гемоглобина кислородом в диапазоне парциального давления от 20 до 40 мм рт. ст. способствует тому, что в ткани организма значительное количество кислорода может диффундировать из крови в условиях фадиента его парциального давления между кровью и клетками тканей (не менее 20 мм рт. ст.). Незначительный процент насыщения гемоглобина кислородом в диапазоне его парциального давления от 80 до 100 мм рт. ст. способствует тому, что человек без риска снижения насыщения артериальной крови кислородом может перемещаться в диапазоне высот над уровнем моря до 2000 м.


Рис. 10.18. Кривая диссоциации оксигемоглобина . Пределы колебания кривой при РС02 = 40 мм рт. ст. (артериальная кровь) и РС02 = 46 мм рт. ст. (венозная кровь) показывают изменение сродства гемоглобина к кислороду (эффект Ходена ).

Общие запасы кислорода в организме обусловлены его количеством, находящимся в связанном состоянии с ионами Fe2+ в составе органических молекул гемоглобина эритроцитов и миоглобина мышечных клеток.

Один грамм гемоглобина связывает 1,34 мл 02. Поэтому в норме при концентрации гемоглобина 150 г/л каждые 100 мл крови могут переносить 20,0 мл 02.

Количество 02, которое может связаться с гемоглобином эритроцитов крови при насыщении 100 % его количества, называется кислородной емкостью гемоглобина . Другим показателем дыхательной функции крови является содержание 02 в крови (кислородная емкость крови ), которое отражает его истинное количество, как связанного с гемоглобином, так и физически растворенного в плазме. Поскольку в норме артериальная кровь насыщена кислородом на 97 %, то в 100 мл артериальной крови содержится примерно 19,4 мл 02.

Газообмен 02 и СО2 через альвеолярно-капиллярную мембра­ну происходит с помощью диффузии, которая осуществляется в два этапа. На первом этапе диффузионный перенос газов проис­ходит через аэрогематический барьер, на втором - происходит связывание газов в крови легочных капилляров, объем которой оставляет 80-150 мл при толщине слоя крови в капиллярах всего 5-8 мкм. Плазма крови практически не препятствует диффузии газов, в отличие от мембраны эритроцитов.

Структура легких создает благоприятные условия для газооб­мена: дыхательная зона каждого легкого содержит около 300 млн альвеол и примерно такое же число капилляров, имеет площадь 40-140 м 2 при толщине аэрогематического барьера всего 0,3-1,2 мкм.

Особенности диффузии газов количественно харктеризуются через диффузионную способность легких. Для 02 диффузион­ная способность легких - это объем газа, переносимого из альве­ол в кровь в 1 минуту при градиенте альвеолярно-капиллярного давления газа, равном 1 мм рт.ст.

Движение газов происходит в результате разницы парциаль­ных давлений. Парциальное давление - это та часть давления, которую составляет данный газ из общей смеси газов. Понижен­ное давление 0„ в ткани способствует движению кислорода к ней. Для СО2 градиент давления направлен в обратную сторону, и СО с выдыхаемым воздухом уходит в окружающую среду. Изучение физиологии дыхания фактически сводится к изучению этих гра­диентов и того, как они поддерживаются.

Градиент парциального давления кислорода и углекислого га­за это сила, с которой молекулы этих газов стремятся проникнуть через альвеолярную мембрану в кровь. Парциальное напряжение газа в крови или тканях - это сила, с которой молекулы раство­римого газа стремятся выйти в газовую среду.

На уровне моря атмосферное давление составляет в среднем 760 мм рт.ст., а процентное содержание кислорода - около 21%. В этом случае р02 в атмосфере составляет: 760 х 21/100=159 мм рт.ст. При вычислении парциального давления газов в альвеоляр­ном воздухе следует учитывать, что в этом воздухе присутствуют пары воды (47 мм рт.ст.). Поэтому это число вычитают из значения

атмосферного давления, и на долю парциального давления газов приходится (760 - 47) == 713 мм рт.ст. При содержании кислорода в альвеолярном воздухе, равном 14 %, его парциальное давление бу­дет 100 мм рт. ст. При содержании двуокиси углерода, равном 5,5%, парциальное давление Сопоставит примерно 40 мм рт.ст.

В артериальной крови парциальное напряжение кислорода достигает почти 100 мм рт.ст., в венозной крови - около 40 мм рт.ст., а в тканевой жидкости, в клетках - 10 - 15 мм рт.ст. Напря­жение углекислого газа в артериальной крови составляет около 40 мм рт.ст., в венозной - 46 мм рт.ст., а в тканях - до 60 мм рт.ст.


Газы в крови находятся в двух состояниях: физически раство­ренном и химически связанном. Растворение происходит в соот­ветствии с законом Генри, согласно которому количество газа, растворенного в жидкости, прямо пропорционально парциально­му давлению этого газа над жидкостью. На каждую единицу пар­циального давления в 100 мл крови растворяется 0,003 мл 02, или 3 мл/л крови.

Каждый газ имеет свой коэффициент растворимости. При температуре тела растворимость СО2 в 25 раз больше, чем 02. Из-за хорошей растворимости углекислоты в крови и тканях СО2 пе­реносится в 20 раз легче, чем 02. Стремление газа переходить из жидкости в газовую фазу называют напряжением газа. В обыч­ных условиях в 100 мл крови находится в растворенном состоя­нии всего 0,3 мл 02 и 2,6 мл СО2. Такие величины не могут обеспе­чить запросы организма в 02.

Газообмен кислорода между альвеолярным воздухом и кровью происходит благодаря наличию концентрационного градиента 02 между этими средами. Транспорт кислорода начинается в капилля­рах легких, где основная масса поступающего в кровь 02 вступает в химическую связь с гемоглобином. Гемоглобин способен избира­тельно связывать 02 и образовывать оксигемоглобин (НвО2). Один грамм гемоглобина связывает 1,36 - 1,34 мл О 2 а в 1 литре крови со­держится 140-150 г гемоглобина. На 1 грамм гемоглобина прихо­дится 1,39 мл кислорода. Следовательно, в каждом литре крови максимально возможное содержание кислорода в химически свя­занной форме составит 190 - 200 мл 02, или 19 об% - это кислород­ная емкость крови. Кровь человека содержит примерно 700-800 г гемоглобина и может связывать 1 л кислорода.

Под кислородной емкостью крови понимают количество О 2которое связывается кровью до полного насыщения гемоглобина. Изменение концентрации гемоглобина в крови, например, при анемиях, отравлениях ядами изменяет ее кислородную емкость. При рождении в крови у человека более высокие значения кисло­родной емкости и концентрации гемоглобина. Насыщение крови кислородом выражает отношение количества связанного кисло­рода к кислородной емкости крови, т.е. под насыщением крови 0^

подразумевается процент оксигемоглобина по отношению к име­ющемуся в крови гемоглобину. В обычных условиях насыщение 0^ составляет 95-97%. При дыхании чистым кислородом насы­щение крови 0^ достигает 100%, а при дыхании газовой смесью с низким содержанием кислорода процент насыщения падает. При 60-65% наступает потеря сознания.

Зависимость связывания кислорода кровью от его парциаль­ного давления можно представить в виде графика, где по оси аб­сцисс откладывается р02 в крови, по ординате - насыщение ге­моглобина кислородом. Этот график - кривая диссоциации окси­гемоглобина, или сатурационная кривая, показывает, какая доля гемоглобина в данной крови связана с 02 при том или ином его парциальном давлении, а какая - диссоциирована, т.е. свободна от кислорода. Кривая диссоциации имеет S-образную форму. Плато кривой характерно для насыщенной 02 (сатурированной) артериальной крови, а крутая нисходящая часть кривой - веноз­ной, или десатурированной, крови в тканях (рис. 21).

Рис. 21. Кривые диссоциации оксигемоглобина цельной крови при различных рН крови (Л) и при изменении температуры (Б}

Кривые 1-6 соответствуют 0°, 10°, 20°, 30°, 38° и 43°С

Сродство кислорода к гемоглобину и способность отдавать 02 в тканях зависит от метаболических потребностей клеток орга­низма и регулируется важнейшими факторами метаболизма тка­ней, вызывающими смещение кривой диссоциации. К этим фак­торам относятся: концентрация водородных ионов", температура, парциальное напряжение углекислоты и соединение, которое на­капливается в эритроцитах - это 2,3-дифосфоглицератфосфат (ДФГ). Уменьшение рН крови вызывает сдвиг кривой диссоциации вправо, а увеличение рН крови - сдвиг кривой влево. Вслед­ствие повышенного содержания СО2 в тканях рН также меньше, чем в плазме крови. Величина рН и содержание СО2 в тканях ор­ганизма изменяют сродство гемоглобина к О 2 Их влияние на кри­вую диссоциации оксигемоглобина называется эффектом Бора (Х.Бор, 1904). При повышении концентрации водородных ионов и парциального напряжения СО2 в среде сродство гемоглобина к кислороду снижается. Этот «эффект» имеет важное приспособительное значение: СО2 в тканях поступает в капилляры, поэтому кровь при том же р02 способна освободить больше кислорода. Образующийся при расщеплении глюкозы метаболит 2,3-ДФГ также снижает сродство гемоглобина к кислороду.

На кривую диссоциации оксигемоглобина оказывает влияние также и температура. Рост температуры значительно увеличивает скорость распада оксигемоглобина и уменьшает сродство гемо­глобина к О 2 Увеличение температуры в работающих мышцах способствует освобождению О 2 Связывание 02 гемоглобином снижает сродство его аминогрупп к СО2 (эффект Холдена). Диф­фузия СО2 из крови в альвеолы обеспечивается за счет поступле­ния растворенного в плазме крови СО2 (5- 10%), из гидрокарбо­натов (80-90%) и, наконец, из карбаминовых соединений эрит­роцитов (5- 15%), которые способны диссоциировать.

Углекислый газ в крови находится в трех фракциях: физичес­ки растворенный, химически связанный в виде бикарбонатов и химически связанный с гемоглобином в виде карбогемоглобина. В венозной крови углекислого газа содержится всего 580 мл. При этом на долю физически растворенного газа приходится 25 мл, на долю карбогемоглобина - около 45 мл, на долю бикарбонатов - 510 мл (бикарбонатов плазмы - 340 мл, эритроцитов - 170 мл). В артериальной крови содержание угольной кислоты меньше.

От парциального напряжения физически растворенного уг­лекислого газа зависит процесс связывания СО2 кровью. Углекис­лота поступает в эритроцит, где имеется фермент карбоангидраза, который может в 10 000 раз увеличить скорость образования угольной кислоты. Пройдя через эритроцит, угольная кислота превращается в бикарбонат и переносится к легким.

Эритроциты переносят в 3 раза больше СО2, чем плазма. Бел­ки плазмы составляют 8 г на 100 см 3 крови, гемоглобина же содер­жится в крови 15 г на 100 см 3 . Большая часть СО2 транспортирует­ся в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2.

Кроме физически растворенного в плазме крови молекуляр­ного СО2 из крови в альвеолы легких диффундирует СО 2 кото­рый высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быст­

рой диссоциации с помощью содержащегося в эритроцитах фер­мента карбоангидразы. Этот фермент в плазме отсутствует. Би­карбонаты плазмы для освобождения СО2 должны сначала про­никнуть в эритроциты, чтобы подвергнуться действию карбоан­гидразы. В плазме находится бикарбонат натрия, а в эритроци­тах - бикарбонат калия. Мембрана эритроцитов хорошо прони­цаема для СО2, поэтому часть СО2 быстро диффундирует из плаз­мы внутрь эритроцитов. Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритро­цитов.

Следует отметить, что процесс выведения СО2 из крови в аль­веолы легкого менее лимитирован, чем оксигенация крови, так как молекулярный СО2 легче проникает через биологические мембраны, чем 0^.

Различные яды, ограничивающие транспорт 0^, такие как СО, нитриты, ферроцианиды и многие другие, практически не действуют на транспорт СО2. Блокаторы карбоангидразы также никогда полностью не нарушают образование молекулярного СО2. И наконец, ткани обладают большой буферной емкостью, но не защищены от дефицита О 2 Выведение СО2 легкими может на­рушиться при значительном уменьшении легочной вентиляции (гиповентиляции) в результате заболевания легких, дыхательных путей, интоксикации или нарушении регуляции дыхания. За­держка СО2 приводит к дыхательному ацидозу - уменьшению концентрации бикарбонатов, сдвигу рН крови в кислую сторону. Избыточное выведение СО2 при гипервентиляции во время ин­тенсивной мышечной работы, при восхождении на большие вы­соты может вызвать дыхательный алкалоз, сдвиг рН крови в ще­лочную сторону.

Дыхание

2. Цель лекции

Проанализировать механизм внешнего дыхания, познакомиться с основными физиологическими показателями легочной вентиляции.

Проанализировать процессы газообмена в легких и тканях, механизмы собственных и сопряженных рефлексов системы дыхания, а также причины его изменения при пониженном и повышенном атмосферном давлении.

З. Задачи лекции. Рассмотреть дыхание на уроне физиологических процессов

Функции дыхательной системы

Типы дыхания

Регуляция дыхания.

Легочные объемы и емкости

Газообмен в легких

Транспорт газов кровью

5. Вопросы для самостоятельной работы,

литература для подготовки

Методические указания к лабораторным занятиям по нормальной физиологии для студентов медицинского института. ПГУ, Пенза 2003.

6. Вопросы для повторения

Анатомия и гистология органов дыхания

Лектор доцент Микуляк Н.И.

Дыхание – это одна из функций организма. Это видно из того, что прекращение дыхания приводит к смерти. Нет дыхания – нет жизни. Почему прекращение дыхания приводит к смерти?

Как вы знаете жизнь это постоянный обмен в-в с окружающей средой. Одним из таких в-в является кислород О 2 , который должен поступать в организм из окружающей среды, а в окружающую среду выбрасывается из организма углекислый газ СО 2 . Кислород необходим организму, т.к. большинство химических реакций в организме являются окислительными с необходимым участием СО 2 . Нет кислорода, нарушаются биохимические процессы, а эти нарушения несовместимы с жизнью. Кроме того, нарушение дыхания ведет к накоплению в организме СО 2 , что губительно сказывается на жизненные отправления в организме. Т.о. дыхание является одной из важнейших функций организма. Нет дыхания – недостаток О 2 – нарушение окислительных биохимических реакций - смерть. Дыхание осуществляется за счет дыхательной системы, т.е. дыхание функция дыхательной системы. Эта ф-ия присуща в некоторой степени коже, слизистой оболочке.

Ф-ция дыхательной системы теснейшим образом взаимосвязана с кровью и ССС. Дыхательная система + кровь + ССС = СКОО (система кислородного обеспечения организма).

Эта взаимосвязь легко выявляется при патологии в организме. Так при воспалении легких, когда нарушается дыхательная ф-ция, наряду с учащением дыхания, усиливается гемодинамика за счет увеличения частоты сокращения сердца, увеличивается кол-во эр., переносчиков О 2 . С другой стороны, нарушения нарушения В ССС, допустим при пороках сердца, когда скорость кругооборота крови уменьшается, усиливается дыхание и гемодинамика.


Дыхание как процесс, складывается из 5 этапов:

1. внешнее дыхание или вентиляция легких или обмен воздуха между внешней средой и альвеолами легких;

2. газообмен (в легких) между альвеолярным воздухом и кровью;

3. транспорт О 2 и СО 2 кровью;

4. обмен газов между кровью и тканями;

5. Тканевое дыхание.

Физиология дыхания изучает первые 4 группы процессов, механизм их регуляции и особенности протекания в различных условиях. Клеточное, т.е. тканевое дыхание изучается в основном биохимией, исследующей тканевые окислительные процессы при которых богатые энергией вещества, содержащиеся в клетке, расщепляются, освобождая скрытую в них энергию.

Вентиляция легких осуществляется за счет периодически сменяющихся вдоха и выдоха.

Рассмотрим вначале инспирацию (механизм вдоха). Вдох – это процесс, обеспечивающий поступление воздуха из окружающей среды в легкие. Вдох – начинается с сокращения дыхательной мускулатуры и мышц диафрагмы. При обычном спокойном вдохе у здоровых людей сокращаются наружние межреберные мышцы и межхрящевые. Это приводит к увеличению размера грудной клетки в сагиттальном направлении и во фронтальном. Почему? В состоянии покоя ребра опущены к низу. При вдохе ребра принимают более горизонтальное положение, поднимаясь кверху. Благодаря чему сечение грудной клетки становиться больше и в поперечном и в продольном направлении. Почему сокращение межреберных мышц ведет не к сближению ребер между собой, а к их поднятию? Это происходит вследствие того, что наружные межреберные мышцы идут от ребра к ребру в косом направлении: сзади и сверху, вперед и вниз. Ребра представляют собой рычаги второго рода в их сочленении с позвоночником. Сила, сокращающейся межреберной мышцы, оказываемая на верхние и низлежащие ребра - одинакова. Но рычаг у низлежащего ребра больше, а следовательно момен6т силы у нижележащего ребра больше, т.е. что легче мышце: поднять нижнее ребро или опустить верхнее или сблизить их? Конечно поднять нижнее ребро. Т.о. подъем ребер ведет к увеличению размеров грудной клетки в сагиттальном и во фронтальном направлении. Кроме того, одновременно сокращается мышца диафрагмы. Это приводит к уплотнению диафрагмы, к опусканию ее купола, вследствие чего увеличивается размер грудной клетки в вертикальном направлении. Опускание диафрагмы на 1 см ведет к увеличению объема на 350 мл. Итак. Грудная клетка увеличивается во всех 3-х направлениях. При спокойном дыхании вдох у мужчин и женщин протекает одинаково. У женщин объем грудной клетки увеличивается за счет преимущественного сокращения межреберных мышц. Это так называемый, грудной тип дыхания или реберный. Такой же тип дыхания у кошек. У мужчин объем грудной клетки увеличивается преимущественно за счет диафрагмы. Это так называемый брюшной или диафрагмальный тип дыхания. Такое дыхание у кроликов.

Тип дыхания не является постоянным и зависит от вида выполняемой работы. Так при переносе груза, дыхание осуществляется за счет движения диафрагмы. При усиленном дыхании (при одышке) в акте вдоха участвуют ряд дополнительных вспомогательных мышц: стерноклейдомастоидей, леватор скапуле, пекторалис майор и минор и т.д.

Итак. Вдох начинается с сокращения дыхательной мускулатуры, что приводит к увеличению объема легких. Легкие всегда следуют за грудной клеткой. Почему? Остановимся на этом.

1. Это обусловлено герметичностью грудной клетки:

2. Свойствами легочной ткани.

Для того, чтобы понять этот процесс надо вспомнить о так называемой модели Дондерса: берут стекл. бутыль с резиновым дном, верхнее отверстие бутыли закрыто пробкой через которую пропущена стеклянная трубка, на которую надевается трахея с легкими от мелкого животного (крысы или кролика). Сбоку в бутыль вмонтирован манометр. На легкие изнутри, т.е. через стекл. трубку действует давление в 1 атм. Снаружи, т.е. из бутыли на поверхность легких также действует давление = 1 атм. Две силы равны, легкие находятся в состоянии покоя. Если оттянуть резиновое дно, то давление в бутыли понизиться, возникает разность давления, действующих на легкие на внутреннюю и наружную стороны. Через трубку действует давление больше. Поэтолму воздух (наружний) поступает в легкие и они растягиваются. Одновременно с этим следует отметить. Что давление в бутыли остается меньше атмосферного.

Закон Бойля-Мариотта р1/р2=v1/v2 или р1v1=р2v2

А теперь перенесемся от этой модели к целому организму.

Легкие покрыты висцеральным листком плевры. Внутренняя поверхность грудной клетки покрыта париетальным листком плевры. Между ними имеется плевральная полость (щель). Между ними имеется некоторое количество жидкости, которая обеспечивает смазку листков, необходимую для уменьшения трения между ними. Плевральная полость герметично замкнута. У человека две плевральные полости. Если человеку ввести в плевральную полость иглу, соединенную с манометром, то мы увидим, что там давление ниже атмосферного на несколько мм. В состоянии свободного выдоха оно = 7 мм.рт.ст. При вдохе оно становиться = 9-10 мм.рт.ст. При максимальном выдохе = 2-3 мм.рт.ст. При максимальном вдохе до 30 мм.рт.ст. А если закрыть дыхательные пути и сделать попытку вдоха (опыт Мюллера), то оно становиться ниже атмосферного на 50-50 мм.рт.ст. Это давление называется отрицательным давлением. Отрицательное давление – это разность между атмосферным давлением и давлением в плевральной полости. Чем же обусловлено отрицательное давление?

Это обусловлено свойствами легочной ткани.

1. растяжимость

2. эластичность.

Если зажать трахею у мертвого животного, вскрыть грудную клетку, то мы увидим, что легкие занимают всю грудную клетку, т.е. они находятся в растянутом состоянии. Если через трахею подать воздух под давлением, то легкие растянуться еще больше. Т.е. легочной ткани присуща растяжимость. Это свойство для легочной ткани присуще в большей степени, чем для любой другой.

Если открыть трахею, продолжая опыт. То из легких выбрасывается воздух и легкие уменьшаются в размере. Это связано с эластичностью легочной ткани.

Эластичность – это способность ткани принимать первоначальный объем или форму. И обусловлена она содержанием большого количества эластических волокон. За счет этих волокон создается эластическая тяга легких – которая постоянно существует в организме, т.к. легкие всегда находятся в растянутом состоянии. Это обусловлено тем. Что грудная клетка

1. имеет больший объем, чем легкие, и она

2. быстрее растет, чем легкое.

Эластическая тяга легких старается постоянно привести объем легких к минимальному, т.е. оторвать висцеральный от париетального. Но т.к. плевральная полость герметически замкнута, то в этой полости создается несколько разреженное пространство, т.е. отрицательное давление.

Эластическая тяга легких зависит:

1. от наличия в стенке альвеол большого кол-ва эластических волокон,

2. обусловлена поверхностным натяжением стенки альвеол.

Что будет с легкими, если нарушить герметичность плевральной щели? Давление на наружную и внутреннюю поверхность легких в этом случае = атмосферному. Но остается эластическая тяга легких, за счет которой легкие сжимаются, принимая минимальный объем. Это состояние называется пневмотораксом. При этом легкие спадаются и дыхательная ф-ция выключается. Пневмоторакс может быть односторонним. Пневмоторакс иногда применяется для лечения.

Т.о. механизм вдоха слагается из:

1. сокращение межреберных мышц и мышц диафрагмы

2. увеличение размеров грудной клетки

3. увеличение объема легких

4. понижение давления в легких

5. поступление воздуха в легкие

Выдох – пассивный (спокойный). Происходит под влиянием силы тяжести грудной клетки и давления органов брюшной полости. Но может быть и активным – форсированным, когда к перечисленным силам уменьшающим объем, присоединяется сокращение внутренних межреберных косых мышц, задних внутренних зубчатых мышц и мышц живота.

Дыхательная мускулатура, обеспечивающая вдох, совершает большую работу. Эта работа необходима для преодоления сопротивления, которое складывается из статического и динамического.

Статическое давление (эластическое) включает

1. вес грудной клетки, которую надо поднять

2. сопротивление сжатию органов брюшной полости, которые оттесняются опускающейся диафрагмой.

3. К статическому сопротивлению относится также преодоление эластического сопротивления ткани легкого при ее растяжении.

При глубоком дыхании статическое сопротивление возрастает.

Динамическое сопротивление (вязкостное или неэластическое) различают

1. тканевое сопротивление

2. воздушное сопротивление

К тканевому сопротивлению относится:

1. трение между листками плевры

2. трение между сердцем и легкими

Воздушное сопротивление, оказываемое со стороны дыхательных путей движущемуся воздуху, это сопротивление зависит от:

1. длины дыхательных путей

2. их диаметра

3. характера движения воздушной струи

4. скорости движения воздуха.

Может ли меняться длина дыхательных путей? Может. Длина дыхательных путей меняется в зависимости от того, дышит человек через нос или через рот. В первом случае длина больше, а значит и воздушное сопротивление возрастает. Длина дыхательных путей возрастает во время вдоха, при выдохе уменьшается. Значительно увеличивается длина дыхательных путей в противогазах. Для того чтобы уменьшить сопротивление и уменьшить работу дыхательной мускулатуры бегуны на короткие дистанции дышат через рот. Но постоянное дыхание через рот чревато большими опасностями. Во-первых, часто возникают простудные заболевания верхних дыхательных путей. Во-вторых, отсутствие дыхания через нос ведет к снижению умственных способностей – к слабоумию. В-третьих, - нарушается вентиляция легких (струя воздуха идущая через нос раздражает рецепторы слизистой носа – импульс в дыхательный центр – усиление дыхания). В-четвертых, выключение носового дыхания ведет к нарушению половой потенции. Это возникает при полипозе носа, когда разрастается лимфатическая ткань в носу.

Воздушное сопротивление зависит от диаметра воздухоносных путей. Диаметр дыхательных путей постоянен у здоровых людей. Он несколько увеличивается при вдохе и уменьшается при выдохе, поэтому выдох происходит медленнее. Чем вдох на 5 – 10 %. Диаметр дыхательных путей уменьшается у курящих людей. К старости при различных заболеваниях органов дыхания (при бронхиальной астме, когда резко уменьшается диаметр, особенно при выдохе, поэтому у этих больных резко затруднен выдох).

Воздушное сопротивление зависит от характера движения воздушной струи. Различают 2 типа движения воздуха: ламинарное и турбулентное.

Ламинарный тип – когда все слои воздуха движуться параллельно – сопротивление наименьшее. Воздух при этом движется клиновидным фронтом. Этот тип дыхания возможен при гладких стенках воздухоносных путей и при относительно небольшой скорости воздуха, а это может быть только при спокойном дыхании.

Турбулентный тип (вихревой), когда частицы воздуха постоянно перемешиваются между собой и сопротивление резко возрастает. Это наблюдается при частом дыхании, при различных заболеваниях, когда нарушается гладкая поверхность дыхательных путей.

Воздушное сопротивление зависит от скорости движения воздуха. При этом больше динамическое сопротивление. В свою очередь скорость движения воздуха зависит от диаметра дыхательных путей т от интенсивности дыхания.

Между статическим и динамическим сопротивлением существует зависимость, которая определяется частотой дыхания. При частом дыхании увеличивается динамическое сопротивление, а при редком – статическое. Мингимальное сопротивление имеет место при частоте дыхания 15 раз в 1 мин. и называется эйпное. Если дыхание редкое (называется брадипное, частое – тахипное).

Легочные объемы и емкости .

Для суждения о легочной вентиляции, т.е. о внешнем дыхании используют определение легочных объемов и емкостей. По цифрам этих показателей можно составить представление о внешнем дыхании. Это используют чаще при определении физического развития человека.

Легочные объемы:

1. ДО – дыхательный объем – это кол-во воздуха, которое поступает и выделяется при спокойном дыхании. ДО=500 мл. (300-900)

2. РОВд – резервный объем вдоха – это кол-во воздуха, которое можно вдохнуть после спокойного вдоха. РОВд=1500 мл. (1,5 – 1,8)

3. РОВыд - резервный объем выдоха – это кол-во воздуха, которое можно выдохнуть после обычного выдоха. РОВд=1500 мл.

4. ОО – остаточный объем – это воздух, который остается после максимального выдоха. Можно определить при вскрытии. ОО = 1500 мл. (1,0 – 1,5)

5. КО – коллапсный объкм. Остается после спадения легких, после выдоха остаточного объема. Поэтому легкие человека, хотябы раз вдохнувшего воздух не тонут в воде. Это используется в судебно-медицинской практике. КО = 150 мл.

Легочные емкости:

Кроме легочных объемов выделяют легочные емкости, которые представляют 2 или несколько объемов, измеренных суммарно:

1. ОЕЛ – общая емкость легких = 5150. ОЕЛ=ДО+РОВд+РОВыд+ОО+КО

Метод плетизмографии или метод газовой ди…..

2. ЖЕЛ – жизненная емкость легких. Это кол-во в-ха, которое можно выдохнуть после максимального вдоха. ЖЕЛ=ДО+РОВд+РОВыд=3500 мл.

(3,5- 5,0) муж, (3,0 – 4,0) жен.

3. ЕМ. Выд – емкость максимального выдоха – воздух, который можно выдохнуть при максимальном выдохе, после спокойного вдоха. ЕМВыд=ДО+РОВыд=2000мл. (2,0-2,3)

4. ЕМВд - емкость максимального вдоха. ЕМВд=ДО+РОВд =2000мл

5. ФОЕ – функциональная остаточная емкость легких – кол-во в-ха, которое остается в легких после спокойного выдоха. ФОЕ=ОО+РОВыд=3000мл.

Функциональные показатели и пробы дыхания.

Легочные объемы и емкости дают право приблизительно представить состояние дыхательного аппарата. Более подробно и точнее о состоянии дыхательного аппарата можно судить изучая функциональные показатели легких и давая различную нагрузку на легкие.

Существует очень много показателей, но более часто применяются в клинике следующие:

1. ЧД – частота дыхания. Средняя 14 – 15 в 1 мин, варьирует от 20 до 40. Если реже или чаще, то это уже нарушение.

2. ГД – глубина дыхания – кол-во в-ха. Которое забирается легкими при вдохе.

3. МОД – минутный объем дыхания – кол-во в-ха, которое проходит через легкие при обычном дыхании: МОД=ЧД*ГД/ДО/=16*500=8000мл.

Минутный объем у здоровых людей колеблется от 6 до 8 л. МОД зависит от возраста, пола и роста, от веса тела. Поэтому при определении МОД, его сравнивают с должным минутным объемом дыхания ДМОД.

ДМОД – определяется по нормограмме и по эмпирическим выведенным формулам:

ДМОД (у мужчин)= 3,2*5 м 2 (поверхность тела)

ДМОД (у женщин)= 3,7*5 м 2 (поверхность тела)

4. МВЛ – кол-во воздухха, которое проходит через легкие в 1 мин. при дыхании max глубоком и max частом.

(130-140л/мин у муж., 110 – 120 л/мин у жен.)

5. РД – это разность между МВЛ и МОД

РД=МВЛ-МОД=120 – 130 л

6. ЖПЛ – это отношение ЖЕЛ к массе тела.

ЖЕЛ/М= 75 мл/кг у муж, и 65 мл/кг у жен.

7. Максимальная скорость движения воздуха – МСДВвд = 3,2 м/с

МСДВвыд=2,8 м/с

8. АВЛ – это показатель того количества воздуха. Который участвует непосредственно в газообмене. Часть воздуха не участвует в газообмене, это та часть. Которая находиться в носовой полости гортани, бронхов. Бронхиолах. Эти дыхательные пути называются мертвым пространством, его объем равен 150 мл. АВЛ=(ДО-ОМП)*ЧД=350*16=5,6 л

МОД= 9 МОД= 9

1) ЧД= 30 2) ЧД= 15

ГД= 300 мл ГД = 600мл

АВЛ!=150*30=4,5л АВЛ!=450*15=6,75л

Альвеолярное дыхание зависит от частоты и глубины. Мертвое пространство играет роль:

1. буфера между альвеолярным и атмосферным воздухом. При каждом вдохе последние порции воздуха задерживаются в мертвом пространстве, поэтому альвеолярный воздух мало меняет свой состав. К концу выдоха в альвеолах находиться ФОЕ функциональная остаточная емкость.

При вдохе альвеолярный воздух обновляется не весь, а всего 1/9 часть. (3150+ 350)

2. роль механического фильтра. Вдыхаемый воздух соприкасается со слизистой оболочкой и очищается.

3. выдыхаемый воздух увлажняется

4. Роль температурного реле. Обеспечивается дыхание при резких перепадах температуры.

В легкие при вдохе поступает атмосферный воздух. Его состав:

О 2 – 21%, СО 2 – 0,63%, N 2 – 79%.

Атмосферный воздух проходя по дыхательным путям смешивается с воздухом альвеол, поэтому в альвеолярном воздухе содержиться:

О 2 – 14%, СО 2 – 5,5%, N 2 – 79%.

Состав альвеолярного воздуха постоянен.

При выдохе альвеолярный воздух смешивается с воздухом мертвого пространства, поэтому О 2 – 16%, СО 2 – 4,5%, N 2 – 79%. Основное назначение вентиляции легких – обеспечить постоянство состава альвеолярного воздуха.

Газообмен в легких.

Обмен газа между альвеолярным воздухом и кровью происходит в альвеолах. Легочная ткань и кровь разделяет альвеолярно-капиллярный барьер, который образован 2-мя слоями клеток – слой эндотелия и слой эпителия, толщина 0,5 мкм. За 1 сек через барьер проходит СО 2 и О 2 , за 1 сек уравнивается состав альвеолярного воздуха и крови. Барьер имеет высокую проницаемость для газов.

Имеется большое количество альвеол, их кол-во в одном легком 300 – 400 млн., общая площадь = 80 – 100 м 2 . Через альвеолярную поверхность за 1 мин. в организм поступает в кровь 250 мл О 2 и удаляется 250 мл СО 2 .

Необходимо для этого при МОК – 5 л. крови (малый круг).

Для газообмена имеет значение парциальное давление. И напряжение газов.

Парциальное давление – это то давление, которое приходиться на долю газа в смеси, если газ находиться в жидкости, то давление газа в жидкости называется напряжением.

Парциальное давление в альвеолярном воздухе: 760-50=710 мм.рт.ст.

Р О2 = 710*14/100= 100 мм.рт.ст.

Р СО2 = 710*5,5/100=40 мм.рт.ст

Р N 2 = 575 мм.рт.ст.

Напряжение газов в венозной крови: О 2 – 40, СО 2 – 46

В артериальной крови: О 2 – 100, СО 2 – 60

В тканях О 2 – 0, СО 2 – 60

Диффузия газов осуществляется при наличии разности между парциальным давлением и напряжением газов.

Газы будут диффундировать в сторону меньшего давления. В альвеолах легкого в венозную кровь идет О 2 , а СО 2 идет при разности градиента давления равен 6 . этот градиент достаточен для того, чтобы удалить из организма 200 мл СО 2 .

Проницаемость барьера не одинакова для всех газов. Для О 2 составляет 25 мл в мин, т.е ч/з барьер в мин. может пройти 25*60=1500мл О 2 .

В норме же = 250 мл.

Газообмен легких осуществляется за счет разности парциального давления газов в альвеолярном воздухе и напряжением их в венозной крови. Обмену газов содействует высокая проницаемость барьера для газов.

Назначение газообмена для газов – ограничение поступления О 2 в кровь и удаление СО 2 . Интенсивность обмена составляет в среднем 250 мл О 2 , 200 мл СО 2 /мин.

Транспорт газов кровью.

В 100 мл артериальной крови О 2 =20 мл. СО 2 = 52 мл.

В 100 мл венозной крови будет находиться О 2 =12 мл. СО 2 = 58 мл.

Часть газов в крови будет находиться в физически растворенном состоянии.

В 100 мл крови растворяется 0,3 мл О 2 1 мл N 2 и 2-3 мл. СО 2 . Основная часть газов находиться в связанном состоянии.

При изучении внешнего дыхания используются следующие понятия:

Альвеолярный воздух – содержащийся в альвеолах после нормального выдоха;

Выдыхаемый воздух – первые порции выдыхаемого воздуха, представляют смесь альвеолярного воздуха и воздуха мертвого пространства.

Состав воздуха в %

В результате газообмена между кровью и альвеолярным воздухом происходит превращение венозной крови в артериальную.

Факторы, определяющие диффузию газов в легких.

I Альвеолярно – капиллярный градиент.

II Отношение вентиляции к перфузии.

III Длина пути перфузии.

IV Диффузионная способность газов.

V Площадь диффузии.

1) Разность парциального давления и напряжения.

Парциальное давление это часть давления смеси газов, приходящаяся на долю одного газа.

Парциальное давление зависит:

б) от величины общего давления: Рассчитывается по следующей формуле.

Например О 2 в атмосферном воздухе

100% газ – 760мм рт. ст.

х = 159мм рт. ст. в атмосферном воздухе.

При расчете парциального давления газа в альвеолярном воздухе нужно учитывать давление находящихся там водяных паров = 47мм рт. ст.

Парциальное напряжение газа – это сила, с которой растворенный в жидкости газ стремится покинуть ее. Обычно устанавливается динамическое равновесие между газом в жидкости и над жидкостью.

В малом круге кровообращения О 2 идет в венозную кровь из легких, а СО 2 из крови в легкие.

Движущей силой является альвеолярно-капилярный градиент.

Для О 2 АКГ = 60мм рт. ст., для СО 2 – 6мм рт. ст. Т.е. диффузионные свойства у СО2 выше, чем у О 2 .

2) Отношение вентиляции к перфузии = МАВ/МОК = 4 – 6 / 4,5 – 5 = 0,8 – 1,1 – в норме.

Вентиляция и перфузия легких должны соответствовать друг другу. Однако распределение кровотока по легким у человека не равномерное. Зависит от положения тела и изменяется под влиянием гравитации. В вертикальном положении величина Q кровотока на единицу объема ткани почти линейно убывает снизу в вверх и верхушки легких меньше снабжаются кровью. Лежа кровоток в верхушке увеличивается, в основании не меняется. Однако лежа на спине в задних отделах легких кровоток выше, чем в передних.

При работе кровоток примерно одинаков во всех отделах.

Вертикальное положение оказывает влияние и на вентиляцию. Интенсивность ее увеличивается сверху вниз (как и кровотока).

Однако ВПО не равномерны в разных отделах.

Механизмы, приспосабливающие кровоток к вентиляции – это вазомоторные и бронхомоторные реакции на изменение газового состава альвеолярного воздуха.

Вазоконстрипции при снижении рО 2 в альвеолах, или РСО 2 .

Бронхоконстрипции при ↓ РСО 2 в альвеолярном воздухе.

На ВПО влияют:

а) неравномерность вентиляции отделов легких в различных положениях тела в пространстве;

б) характер легочного кровотока в зависимости от положения тела и активности организма;

в) скорость кровотока

3) Длина пути .

СО 2 ; О 2 проходят путь: альвеолярная стенка + межклеточное пространство + базальная мембрана капилляра + эндотелий капилляра + слой плазмы + мембрана эритроцита. Увеличение длины пути – ухудшение оксигенации крови – обратная зависимость .

5) Площадь диффузии – зависит от поверхности альвеол и капилляров, через которые идет диффузия (зависимость прямая).

Дыхание является наиболее важной функцией организма, оно обеспечивает поддержание оптимального уровня окислительно-восстановительных процессов в клетках, клеточного дыхания.

В обеспечении процесса дыхания участвуют специализированные органы (нос, легкие, диафрагма, сердце) и клетки (эритроциты, нервные клетки, хеморецепторы кровеносных сосудов и нервные клетки головного мозга, образующие дыхательный центр).

Условно процесс дыхания можно разделить на три основных этапа: внешнее дыхание, транспорт газов (кислорода и углекислого газа) кровью (между легкими и клетками) и тканевое дыхание (окисление различных веществ в клетках).

Внешнее дыхание - газообмен между организмом и окружающим его атмосферным воздухом.

Транспорт газов кровью . Основным переносчиком кислорода является гемоглобин, белок, который находится внутри эритроцитов. С помощью гемоглобина транспортируется также до 20% углекислого газа.

Тканевое или внутреннее дыхание . Этот процесс условно можно разделить на два: обмен газов между кровью и тканями, потребление кислорода клетками и выделение углекислого газа (внутриклеточное, эндогенное дыхание).

Очевидно, что и состояние здоровья определяется состоянием функции дыхания, а резервные возможности организма, запас здоровья зависит от резервных возможностей системы дыхания.

Транспорт газов кровью

В организме кислород и углекислый газ транспортируются кровью. Кислород, поступающий из альвеолярного воздуха в кровь, связывается с гемоглобином эритроцитов, образуя так называемый оксигемоглобин, и в таком виде доставляется к тканям. В тканевых капиллярах кислород отщепляется и переходит в ткани, где включается в окислительные процессы. Свободный гемоглобин связывает водород и превращается в так называемый восстановленный гемоглобин. Углекислый газ, образующийся в тканях, переходит в кровь и поступает в эритроциты. Затем часть углекислого газа соединяется с восстановленным гемоглобином, образуя так называемый карбгемоглобин, и в таком виде углекислый газ и доставляется к легким. Однако большая часть углекислого газа в эритроцитах при участии фермента карбоангидразы превращается в бикарбонаты, которые переходят в плазму и транспортируются к легким. В легочных капиллярах бикарбонаты при помощи специального фермента распадаются и выделяется углекислый газ. Отщепляется углекислый газ и от гемоглобина. Углекислый газ переходит в альвеолярный воздух и с выдыхаемым воздухом удаляется во внешнюю среду.



3….Хар-ка процесса защиты ор-ма от воздействия факторов внешн и внутр среды. Врожденые мех-мы защиты: безусловные защитные рефлексы, барьерные фун-ии кожи и слизистых оболочек, адаптационный синдром

Кожа тесно связана со всеми органами и системами организма. Она выполняет множество важных функций, основные из них защитная, дыхательная, абсорбционная, выделительная, пигментообразующая. Кроме того, кожа принимает участие в сосудистых реакциях, терморегуляции, обменных процессах, нервно-рефлекторных реакциях организма.

Защитная функция кожи весьма разнообразна. Механическая защита от внешних раздражителей обеспечивается плотным роговым слоем, особенно на ладонях и подошвах. Кожа благодаря этим свойствам способна оказывать сопротивление механическим воздействиям - давлению, ушибам, разрывам и пр.

Кожа в значительной мере защищает организм от радиационных воздействий. Инфракрасные лучи почти целиком задерживаются роговым слоем, ультрафиолетовые - частично. Проникая в глубь эпидермиса, УФ-лучи стимулируют выработку пигмента - меланина , поглощающего УФ-лучи и тем самым защищающего клетки от вредного воздействия избыточной радиации и инсоляции (облучение солнечной радиацией.



В защите от химических раздражителей большую роль играет кератин рогового слоя. Основным барьером для проникновения в кожу электролитов, неэлектролитов, а также воды служит прозрачный слой и самая глубокая часть рогового слоя, богатые холестерином.

Защита от микроорганизмов обеспечивается бактерицидными свойствами кожи. Количество различных микроорганизмов на поверхности здоровой кожи человека варьирует, от 115 тыс. до 32 млн. на 1 см квадратный. Неповрежденная кожа непроницаема для микроорганизмов.

Адаптационный синдром- совокупность защитных реакций организма человека или животного (преимущественно эндокринной системы) при стрессе. В адаптационном синдроме различают стадии тревоги (мобилизация защитных сил), резистентности (приспособление к трудной ситуации), истощения (при сильном и длительном стрессе может закончиться смертью). Концепции адаптационного синдрома и стресса выдвинуты Г. Селье.

В развитии адаптационного синдрома выделяют три стадии:

Стадия тревоги : продолжается от нескольких часов до двух суток. Включает в себя две фазы – шок и противошок (на последней происходит мобилизация защитных реакций организма).

На стадии сопротивляемости устойчивость организма к различным воздействиям повышена. Вторая стадия приводит либо к стабилизации, либо сменяется последней стадией – истощением.

Стадия истощения : защитные реакции ослаблены, сам организм и психика утомлены.

У адаптационного синдрома есть и физиологические признаки: увеличение коры надпочечников, уменьшение вилочковой железы, селезенки и лимфатических узлов, нарушение обмена веществ с преобладанием процессов распада.

БИЛЕТ 27

Цикл сердечн деят-ти

Механическая работа сердца связана с сокращением его миокарда. Работа правого желудочка в три раза меньше работы левого желудочка.

Сердце с механической точки зрения представляет собой насос ритмического действия, чему способствует клапанный аппарат. Ритмические сокращения и расслабления сердца обеспечивают непрерывный ток крови. Сокращение сердечной мышцы называется систолой , его расслабление -диастолой . При каждой систоле желудочков происходит выталкивание крови из сердца в аорту и легочный ствол.

В обычных условиях систола и диастола четко согласованы во времени. Период, включающий одно сокращение и последующее расслабление сердца, составляет сердечный цикл . Его продолжительность у взрослого человека равна 0,8 секунды при частоте сокращений 70 - 75 раз в минуту. Началом каждого цикла является систола предсердий. Она длится 0,1 сек. По окончании систолы предсердий наступает их диастола, а также систола желудочков. Систола желудочков длится 0,3 сек. В момент систолы в желудочках повышается давление крови. По окончании систолы желудочков начинается фаза общего расслабления, длящаяся 0,4 сек. В целом период расслабления предсердий равен 0,7 сек., а желудочков - 0,5 сек. Физиологическое значение периода расслабления состоит в том, что за это время в миокарде происходят обменные процессы между клетками и кровью, т. е. происходит восстановление работоспособности сердечной мышцы.

2…Общая хар-ка органов дыхания: носовая полость

Основная фун-ия дыхания-обеспечен тканей человеч орг-мы кислородом и освобождение их от углекислого газа. В дыхательной системе выделяют органы, выполняющ воздухопроводящую (полость носа, носоглотка, гортань, трахея, бронхи) и дыхательную, или газообменную фун-ии(легкие)

Носовая полость

Различают наружный нос и носовую полость. За счет наружного носа увеличивается объем носовой полости. Носовая полость поделена вертикальной носовой перегородкой на две симметричные половины, которые спереди сообщаются с наружной атмосферой через наружный нос с помощью ноздрей , а сзади - с носоглоткой с помощью хоан . На боковых стенках этой полости расположены носовые раковины , делящие каждую половину носовой полости носовые ходы. В нижний носовой ход открываетсяносослезный канал , по которому в носовую полость выделяется некоторое количество слезной жидкости. Стенки носовой полости выстланы слизистой оболочкой, образованной мерцательным эпителием.

Носовая полость - специализированный отдел верхних дыхательных путей, так как здесь вдыхаемых воздух подготавливается для дальнейшего движения по дыхательным путям и подвергается специальной обработке:

· согревается или охлаждается до температуры тела;

· увлажняется за счет слизи, находящ в слизистой носовой полости;

· очищается и обеззараживается: слизь обволакивает частицы пыли, оседающие на слизистую; слизь содержит бактерицидное вещество - лизоцим , с помощью которого подвергаются разрушению болезнетворные бактерии;

· подвергается химическому контролю: в слизистой верхней части носовой полости располагаютсяобонятельные рецепторы .

Носовая полость имеет добавочные полости придаточные пазухи носа , расположенные в воздухоносных костях черепа: в верхней челюсти гайморова пазуха , в лобной кости - лобная (фронтальная) пазуха , а также имеются дополнительные полости в клиновидной и решетчатой кости. Воспаление слизистой этих пазух приводит к серьезным заболеваниям гаймориту и фронтиту .



Copyright © 2024 Образовательный портал - HappyWorldSchool.