Как концентрация влияет на скорость реакции. Скорость химической реакции

Цель работы: изучение скорости химической реакции и ее зависимости от различных факторов: природы реагирующих веществ, концентрации, температуры.

Химические реакции протекают с различной скоростью. Скоростью химической реакции называют изменением концентрации реагирующего вещества в единицу времени. Она равно числу актов взаимодействия в единицу времени в единице объёма для реакции, протекающих в гомогенной системе (для гомогенных реакций), или на единице поверхности раздела фаз для реакций, протекающих в гетерогенной системе (для гетерогенных реакций).

Средняя скорость реакции v ср . в интервале времени от t 1 до t 2 определяется отношением:

где С 1 и С 2 – молярная концентрация любого участника реакции в моменты времени t 1 и t 2 соответственно.

Знак “–“ перед дробью относиться к концентрации исходных веществ, ΔС < 0, знак “+” – к концентрации продуктов реакции, ΔС > 0.

Основные факторы, влияющие на скорость химической реакции: природа реагирующих веществ, их концентрация, давление (если в реакции участвуют газы), температура, катализатор, площадь поверхности раздела фаз для гетерогенных реакций.

Большинство химических реакций представляют собой сложные процессы, протекающие в несколько стадий, т.е. состоящие из нескольких элементарных процессов. Элементарные или простые реакции – это реакции, протекающие в одну стадию.

Для элементарных реакций зависимость скорости реакции от концентрации выражается законом действия масс.

При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам.

Для реакции в общем виде

а А + b В… → с С,

cогласно закону действия масс v выражается соотношением

v = К∙с(А) а ∙ с(В) b ,

где с(А) и с(В) – молярные концентрации реагирующих веществ А и В;

К – константа скорости данной реакции, равная v , если с(А) а =1 и с(В) b =1, и зависящая от природы реагирующих веществ, температуры, катализатора, площади поверхности раздела фаз для гетерогенных реакций.

Выражение зависимости скорости реакции от концентрации называют кинетическим уравнением.

В случае сложных реакций закон действия масс применим к каждой отдельной стадии.

Для гетерогенных реакций в кинетическое уравнение входят только концентрации газообразных и растворенных веществ; так, для горения угля

С (к) + О 2 (г) → СО 2 (г)

уравнение скорости имеет вид

v = К∙с(О 2)

Несколько слов о молекулярности и кинетическом порядке реакции.

Понятие «молекулярность реакции» применяют только к простым реакциям. Молекулярность реакции характеризует число частиц, участвующих в элементарном взаимодействии.


Различают моно-, би- и тримолекулярные реакции, в которых участвуют соответственно одна, две и три частицы. Вероятность одновременного столкновения трех частиц мала. Элементарный процесс взаимодействия более чем трех частиц неизвестен. Примеры элементарных реакций:

N 2 O 5 → NO + NO + O 2 (мономолекулярная)

H 2 + I 2 → 2HI (бимолекулярная)

2NO + Cl 2 → 2NOCl (тримолекулярная)

Молекулярность простых реакций совпадает с общим кинетическим порядком реакции. Порядок реакции определяет характер зависимости скорости от концентрации.

Общий (суммарный) кинетический порядок реакции – сумма показателей степеней при концентрациях реагирующих веществ в уравнении скорости реакции, определенная экспериментально.

С повышением температуры скорость большинства химических реакций увеличивается. Зависимость скорости реакции от температуры приближено определяется правилом Вант-Гоффа.

При повышении температуры на каждые 10 градусов скорость большинства реакций увеличивается в 2–4 раза.

где и – скорость реакции соответственно при температурах t 2 и t 1 (t 2 >t 1 );

γ – температурный коэффициент скорости реакции, это число, показывающее, во сколько раз увеличивается скорость химической реакции при увеличении температуры на 10 0 .

С помощью правила Вант-Гоффа возможно лишь примерно оценить влияние температуры на скорость реакции. Более точное описание зависимости скорости реакции температуры осуществимо в рамках теории активации Аррениуса.

Одним из методов ускорения химической реакции является катализ, который осуществляется при помощи веществ (катализаторов).

Катализаторы – это вещества, которые изменяют скорость химической реакции вследствие многократного участия в промежуточном химическом взаимодействии с реагентами реакции, но после каждого цикла промежуточного взаимодействия восстанавливают свой химический состав.

Механизм действия катализатора сводится к уменьшению величины энергии активации реакции, т.е. уменьшению разности между средней энергией активных молекул (активного комплекса) и средней энергией молекул исходных веществ. Скорость химической реакции при этом увеличивается.

Скорость химической реакции равна изменению количества вещества в единицу времени в единице реакционного пространства В зависимости от типа химической реакции (гомогенная или гетерогенная) меняется характер реакционного пространства. Реакционным пространством принято называть область, в которой локализован химический процесс: объем (V), площадь (S).

Реакционным пространством гомогенных реакций является объем, заполненный реагентами. Так как отношение количества вещества к единице объема называется концентрацией (с), то скорость гомогенной реакции равна изменению концентрации исходных веществ или продуктов реакции во времени. Различают среднюю и мгновенную скорости реакции.

Средняя скорость реакции равна:

где с2 и с1 - концентрации исходных веществ в моменты времени t2 и t1.

Знак минус «-» в этом выражении ставится при нахождении скорости через изменение концентрации реагентов (в этом случае Dс < 0, так как со временем концентрации реагентов уменьшаются); концентрации продуктов со временем нарастают, и в этом случае используется знак плюс «+».

Скорость реакции в данный момент времени или мгновенная (истинная)скорость реакции vравна:

Скорость реакции в СИ имеет единицу [моль×м-3×с-1], также используются и другие единицы величины [моль×л-1×с-1], [моль×см-3 ×с-1], [моль×см –З×мин-1].

Скоростью гетерогенной химической реакции v называют, изменение количества реагирующего вещества (Dn) за единицу времени (Dt) на единице площади раздела фаз (S) и определяется по формуле:

или через производную:

Единица скорости гетерогенной реакции - моль/м2 ×с.

Пример 1 . В сосуде смешали хлор и водород. Смесь нагрели. Через 5 с концентрация хлороводорода в сосуде стала равной 0,05 моль/дм3. Определите среднюю скорость образования хлороволорода (моль/дм3 с).

Решение. Определяем изменение концентрации хлороводорода в сосуде через 5 с после начала реакции:

где с2, с1 - конечная и начальная молярная концентрация HСl.

Dс (НСl) = 0,05 - 0 = 0,05 моль/дм3.

Рассчитаем среднюю скорость образования хлороводорода, используя уравнение (3.1):

Ответ: 7 = 0,01 моль/дм3 ×с.

Пример 2. В сосуде объемом 3 дм3 протекает реакция:

C2H2 + 2H2®C2H6.

Исходная масса водорода равна 1 г. Через 2 с после начала реакции масса водорода стала равной 0,4 г. Определите среднюю скорость образования С2Н6 (моль/дм"×с).

Решение. Масса водорода, вступившего в реакцию (mпрор (H2)), равна разнице между исходной массой водорода (mисх (Н2)) и конечной массой непрореагировавшего водорода (тк (Н2)):

тпрор.(Н2)= тисх (Н2)-mк(Н2); тпрор (Н2)= 1-0,4 = 0,6 г.

Рассчитаем количество водорода:

= 0,3 моль.

Определяем количество образовавшегося С2Н6:

По уравнению: из 2 моль Н2 образуется ® 1 моль С2Н6;

По условию: из 0,3 моль Н2 образуется ® х моль С2Н6.

n(С2Н6) = 0,15 моль.

Вычисляем концентрацию образовавшегося С2Н6:

Находим изменение концентрации С2Н6:

0,05-0 = 0,05 моль/дм3. Рассчитаем среднюю скорость образования С2Н6, используя уравнение (3.1):

Ответ: =0,025 моль/дм3 ×с.

Факторы, влияющие на скорость химической реакции . Скорость химической реакции определяется следующими основными факторами:

1) природой реагирующих веществ (энергия активации);

2) концентрацией реагирующих веществ (закон действующих масс);

3) температурой (правило Вант-Гоффа);

4) наличием катализаторов (энергия активации);

5) давлением (реакции с участием газов);

6) степенью измельчения (реакции, протекающие с участием твердых веществ);

7) видом излучения (видимое, УФ, ИК, рентгеновское).

Зависимость скорости химической реакции от концентрации выражается основным законом химической кинетики - законом действующих масс.

Закон действующих масс . В 1865 г. профессор Н. Н. Бекетов впервые высказал гипотезу о количественной взаимосвязи между массами реагентов и временем течения реакции: «... притяжение пропорционально произведению действующих масс». Эта гипотеза нашла подтверждение в законе действия масс, который был установлен в 1867 г. двумя норвежскими химиками К. М. Гульдбергом и П. Вааге. Современная формулировка закона действия масс такова: при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степе нях, равных стехиометрическим коэффициентам в уравненш реакции.

Для реакции аА + bВ = тМ + nN кинетическое уравнение за-кона действия масс имеет вид:

, (3.5)

где - скорость реакции;

k - коэффициент пропорциональности, называемый константой скорости химической реакции (при = 1 моль/дм3 k численно равна ); - концентрации реагентов, участвующих в реакции.

Константа скорости химической реакции не зависит от концентрации реагентов, а определяется природой реагирующих веществ и условиями протекания реакций (температурой, наличием катализатора). Для конкретной реакции, протекающей при данных условиях, константа скорости есть величина постоянная.

Пример 3. Написать кинетическое уравнение закона действия масс для реакции:

2NO (г) + С12 (г) = 2NOCl (г).

Решение. Уравнение (3.5) для данной химической реакции имеет:ледующий вид:

.

Для гетерогенных химических реакций в уравнение закона действующих масс входят концентрации только тех веществ, которые находятся в газовой или жидкой фазах. Концентрация вещества, находящегося в твердой фазе, обычно постоянна и входит в константу скорости.

Пример 4. Написать кинетическое уравнение закона действия масс для реакций:

a)4Fe(т) + 3O2(г) = 2Fe2O3(т);

б) СаСОз (т) = СаО (т) + СО2 (г).

Решение. Уравнение (3.5) для данных реакций будет иметь следующий вид:

Поскольку карбонат кальция - твердое вещество, концентрация которого не изменяется в ходе реакции, т. е. в данном случае скорость реакции при определенной температуре постоянна.

Пример 5. Во сколько раз увеличится скорость реакции окисления оксида азота (II) кислородом, если концентрации реагентов увеличить в два раза?

Решение. Записываем уравнение реакции:

2NO + О2= 2NO2.

Обозначим начальные и конечные концентрации реагентов соответственно с1(NO), cl(O2) и c2(NO), c2(O2). Точно так же обозначим начальную и конечную скорости реакций: vt, v2. Тогда, используя уравнение (3.5), получим:

.

По условию с2(NO) = 2c1 (NO), с2(О2) =2с1(О2).

Находим v2 =к2 ×2cl(O2).

Находим, во сколько раз увеличится скорость реакции:

Ответ: в 8 раз.

Влияние давления на скорость химической реакции наиболее существенно для процессов с участием газов. При изменении давления в и раз в п раз уменьшается объем иn раз возрастает концентрация, и наоборот.

Пример 6. Во сколько раз возрастет скорость химической реакции между газообразными веществами, реагирующими по уравнению А + В = С, если увеличить давление в системе в 2 раза?

Решение. Используя уравнение (3.5), выражаем скорость реакции до увеличения давления:

.

Кинетическое уравнение после увеличения давления будет иметь следующий вид:

.

При увеличении давления в 2 раза объем газовой смеси согласно закону Бойля-Мариотта (рУ = const) уменьшится также в 2 раза. Следовательно, концентрация веществ возрастет в 2 раза.

Таким образом, с2(А) = 2c1(A), c2(B) = 2с1{В). Тогда

Определяем, во сколько раз возрастет скорость реакции при увеличении давления.

Скорость химических реакций, ее зависимость от различных факторов

Гомогенные и гетерогенные химические реакции

Химические реакции протекают с различными скоростями: с малой скоростью — при образовании сталактитов и сталагмитов, со средней скоростью — при варке пищи, мгновенно — при взрыве. Очень быстро проходят реакции в водных растворах, практически мгновенно. Смешаем растворы хлорида бария и сульфата натрия — сульфат бария в виде осадка образуется немедленно. Быстро, но не мгновенно, горит сера, магний растворяется в соляной кислоте, этилен обесцвечивает бромную воду. Медленно образуется ржавчина на железных предметах, налет на медных и бронзовых изделиях, медленно гниет листва, разрушаются зубы.

Предсказание скорости химической реакции, а также выяснение ее зависимости от условий проведения процесса — задача химической кинетики — науки о закономерностях протекания химических реакций во времени.

Если химические реакции происходят в однородной среде, например, в растворе или в газовой фазе, то взаимодействие реагирующих веществ происходит во всем объеме. Такие реакции, как вы знаете, называют гомогенными .

Скорость гомогенной реакции ($v_{гомог.}$) определяется как изменение количества вещества в единицу времени в единице объема:

$υ_{гомог.}={∆n}/{∆t·V},$

где $∆n$ — изменение числа молей одного вещества (чаще всего исходного, но может быть и продукта реакции); $∆t$ — интервал времени (с, мин.); $V$ — объем газа или раствора (л).

Поскольку отношение количества вещества к объему представляет собой молярную концентрацию $С$, то

${∆n}/{V}=∆C.$

Таким образом, скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени:

$υ_{гомог.}={∆C}/{∆t}[{моль}/{л·с}]$

если объем системы не меняется. Если реакция идет между веществами, находящимися в разных агрегатных состояниях (например, между твердым веществом и газом или жидкостью), или между веществами, неспособными образовывать гомогенную среду (например, между несмешивающимися жидкостями), то она проходит только на поверхности соприкосновения веществ. Такие реакции называют гетерогенными .

Скорость гетерогенной реакции определяется как изменение количества вещества в единицу времени на единице поверхности:

$υ_{гомог.}={∆C}/{∆t·S}[{моль}/{c·м^2}]$

где $S$ — площадь поверхности соприкосновения веществ ($м^2, см^2$).

Если при какой-либо протекающей реакции экспериментально измерять концентрацию исходного вещества в разные моменты времени, то графически можно отобразить ее изменение с помощью кинетической кривой для этого реагента.

Скорость реакции не является постоянной величиной. Мы указывали лишь некоторую среднюю скорость данной реакции в определенном интервале времени.

Представьте себе, что мы определяем скорость реакции

$H_2+Cl_2→2HCl$

а) по изменению концентрации $Н_2$;

б) по изменению концентрации $HCl$.

Одинаковые ли мы получим значения? Ведь из $1$ моль $Н_2$ образуется $2$ моль $HCl$, поэтому и скорость в случае б) окажется больше в два раза. Следовательно, значение скорости реакции зависит и от того, по какому веществу ее определяют.

Изменение количества вещества, по которому определяют скорость реакции, — это внешний фактор, наблюдаемый исследователем. По сути, все процессы осуществляются на микроуровне. Очевидно, для того, чтобы какие-то частицы прореагировали, они прежде всего должны столкнуться, причем столкнуться эффективно: не разлететься, как мячики, в разные стороны, а так, чтобы в частицах разрушились или ослабли старые связи и смогли образоваться новые, а для этого частицы должны обладать достаточной энергией.

Расчетные данные показывают, что, например, в газах столкновения молекул при атмосферном давлении исчисляются миллиардами за $1$ секунду, т.е. все реакции должны были бы идти мгновенно. Но это не так. Оказывается, что лишь очень небольшая доля молекул обладает необходимой энергией, приводящей к эффективному соударению.

Минимальный избыток энергии, который должна иметь частица (или пара частиц), чтобы произошло эффективное соударение, называют энергией активации $E_a$.

Таким образом, на пути всех частиц, вступающих в реакцию, имеется энергетический барьер, равный энергии активации $E_a$. Когда он мал, то находится много частиц, которые могут его преодолеть, и скорость реакции велика. В противном случае требуется толчок. Когда вы подносите спичку, чтобы зажечь спиртовку, вы сообщаете дополнительную энергию $E_a$, необходимую для эффективного соударения молекул спирта с молекулами кислорода (преодоление барьера).

В заключение сделаем вывод: многие возможные реакции практически не идут, т.к. высока энергия активации.

Это имеет огромное значение для нашей жизни. Представьте, что бы случилось, если бы все термодинамически разрешенные реакции могли идти, не имея никакого энергетического барьера (энергии активации). Кислород воздуха прореагировал бы со всем, что может гореть или просто окисляться. Пострадали бы все органические вещества, они превратились бы в углекислый газ $CO_2$ и воду $H_2O$.

Скорость химической реакции зависит от многих факторов. Основными из них являются: природа и концентрация реагирующих веществ, давление (в реакциях с участием газов), температура, действие катализаторов и поверхность реагирующих веществ в случае гетерогенных реакций. Рассмотрим влияние каждого из этих факторов на скорость химической реакции.

Температура

Вам известно, что при повышении температуры в большинстве случаев скорость химической реакции значительно возрастает. В XIX в. голландский химик Я. Х. Вант-Гофф сформулировал правило:

Повышение температуры на каждые $10°С$ приводит к увеличению скорости реакции в 2-4 раза (эту величину называют температурным коэффициентом реакции).

При повышении температуры средняя скорость молекул, их энергия, число столкновений увеличиваются незначительно, зато резко повышается доля активных молекул, участвующих в эффективных соударениях, преодолевающих энергетический барьер реакции.

Математически эта зависимость выражается соотношением:

$υ_{t_2}=υ_{t_1}γ^{{t_2-t_1}/{10}},$

где $υ_{t_1}$ и $υ_{t_2}$ — скорости реакции соответственно при конечной $t_2$ и начальной $t_1$ температурах, а $γ$ — температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры на каждые $10°С$.

Однако для увеличения скорости реакции повышение температуры не всегда применимо, т.к. исходные вещества могут начать разлагаться, могут испаряться растворители или сами вещества.

Концентрация реагирующих веществ

Изменение давления при участии в реакции газообразных веществ также приводит к изменению концентрации этих веществ.

Чтобы осуществилось химическое взаимодействие между частицами, они должны эффективно столкнуться. Чем больше концентрация реагирующих веществ, тем больше столкновений и, соответственно, выше скорость реакции. Например, в чистом кислороде ацетилен сгорает очень быстро. При этом развивается температура, достаточная для плавления металла. На основе большого экспериментального материала в 1867 г. норвежцами К. Гульденбергом и П. Вааге и независимо от них в 1865 г. русским ученым Н. И. Бекетовым был сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам в уравнении реакции.

Этот закон называют также законом действующих масс.

Для реакции $А+В=D$ этот закон выражается так:

$υ_1=k_1·C_A·C_B$

Для реакции $2А+В=D$ этот закон выражается так:

$υ_2=k_2·C_A^2·C_B$

Здесь $С_А, С_В$ — концентрации веществ $А$ и $В$ (моль/л); $k_1$ и $k_2$ — коэффициенты пропорциональности, называемые константами скорости реакции.

Физический смысл константы скорости реакции нетрудно установить — она численно равна скорости реакции, в которой концентрации реагирующих веществ равны $1$ моль/л или их произведение равно единице. В таком случае ясно, что константа скорости реакции зависит только от температуры и не зависит от концентрации веществ.

Закон действующих масс не учитывает концентрации реагирующих веществ, находящихся в твердом состоянии, т.к. они реагируют на поверхности, и их концентрации обычно являются постоянными.

Например, для реакции горения угля

выражение скорости реакции должно быть записано так:

$υ=k·C_{O_2}$,

т. е. скорость реакции пропорциональна только концентрации кислорода.

Если же уравнение реакции описывает лишь суммарную химическую реакцию, проходящую в несколько стадий, то скорость такой реакции может сложным образом зависеть от концентраций исходных веществ. Эта зависимость определяется экспериментально или теоретически на основании предполагаемого механизма реакции.

Действие катализаторов

Можно увеличить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации. Их называют катализаторами (от лат. katalysis — разрушение).

Катализатор действует как опытный проводник, направляющий группу туристов не через высокий перевал в горах (его преодоление требует много сил и времени и не всем доступно), а по известным ему обходным тропам, по которым можно преодолеть гору значительно легче и быстрее. Правда, по обходному пути можно попасть не совсем туда, куда ведет главный перевал. Но иногда именно это и требуется! Именно так действуют катализаторы, которые называют селективными . Ясно, что нет необходимости сжигать аммиак и азот, зато оксид азота (II) находит применение в производстве азотной кислоты.

Катализаторы — это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остающиеся неизменными количественно и качественно.

Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом . Катализаторы широко используют в различных отраслях промышленности и на транспорте (каталитические преобразователи, превращающие оксиды азота выхлопных газов автомобиля в безвредный азот).

Различают два вида катализа.

Гомогенный катализ , при котором и катализатор, и реагирующие вещества находятся в одном агрегатном состоянии (фазе).

Гетерогенный катализ , при котором катализатор и реагирующие вещества находятся в разных фазах. Например, разложение пероксида водорода в присутствии твердого катализатора оксида марганца (IV):

$2H_2O_2{→}↖{MnO_2(I)}2H_2O_{(ж)}+O_2(г)$

Сам катализатор не расходуется в результате реакции, но если на его поверхности адсорбируются другие вещества (их называют каталитическими ядами ), то поверхность становится неработоспособной, требуется регенерация катализатора. Поэтому перед проведением каталитической реакции тщательно очищают исходные вещества.

Например, при производстве серной кислоты контактным способом используют твердый катализатор — оксид ванадия (V) $V_2O_5$:

$2SO_2+O_2⇄2SO_3$

При производстве метанола используют твердый цинкохромовый катализатор ($8ZnO·Cr_2O_3×CrO_3$):

$CO_{(г)}+2H_{2(г)}⇄CH_3OH_{(г)}$

Очень эффективно работают биологические катализаторы — ферменты . По химической природе это белки. Благодаря им в живых организмах при невысокой температуре с большой скоростью протекают сложные химические реакции. Ферменты отличаются особой специфичностью, каждый из них ускоряет только свою реакцию, идущую в нужное время и в нужном месте с выходом, близким к $100%$. Создание аналогичных ферментам искусственных катализаторов — мечта химиков!

Вы, конечно, слышали и о других интересных веществах — ингибиторах (от лат. inhibere — задерживать). Они с высокой скоростью реагируют с активными частицами с образованием малоактивных соединений. В результате реакция резко замедляется и затем прекращается. Ингибиторы часто специально добавляют в разные вещества, чтобы предотвратить нежелательные процессы.

Например, с помощью ингибиторов стабилизируют растворы пероксида водорода, мономеры для предотвращения преждевременной полимеризации, соляную кислоту, чтобы была возможность ее транспортировки в стальной таре. Ингибиторы содержатся и в живых организмах, они подавляют различные вредные реакции окисления в клетках тканей, которые могут инициироваться, например, радиоактивным излучением.

Природа реагирующих веществ (их состав, строение)

Значение энергии активации является тем фактором, посредством которого сказывается влияние природы реагирующих веществ на скорость реакции.

Если энергия активации мала ($< 40$ кДж/моль), то это означает, что значительная часть столкновений между частицами реагирующих веществ приводит к их взаимодействию, и скорость такой реакции очень большая. Все реакции ионного обмена протекают практически мгновенно, ибо в этих реакциях участвуют разноименно заряженные ионы, и энергия активации в этих случаях ничтожно мала.

Если энергия активации велика ($> 120$ кДж/моль), то это означает, что лишь ничтожная часть столкновений между взаимодействующими частицами приводит к реакции. Скорость такой реакции поэтому очень мала. Например, протекание реакции синтеза аммиака при обычной температуре заметить практически невозможно.

Если энергии активации имеют промежуточные значения ($40-120$ кДж/моль), то скорости таких реакций будут средними. К таким реакциям можно отнести взаимодействие натрия с водой или этиловым спиртом, обесцвечивание бромной воды этиленом, взаимодействие цинка с соляной кислотой и др.

Поверхность соприкосновения реагирующих веществ

Скорость реакций, идущих на поверхности веществ, т.е. гетерогенных, зависит при прочих равных условиях от свойств этой поверхности. Известно, что растертый в порошок мел гораздо быстрее растворяется в соляной кислоте, чем равный по массе кусочек мела.

Увеличение скорости реакции объясняется, в первую очередь, увеличением поверхности соприкосновения исходных веществ, а также рядом других причин, например, разрушением структуры правильной кристаллической решетки. Это приводит к тому, что частицы на поверхности образующихся микрокристаллов значительно реакционноспособнее, чем те же частицы на гладкой поверхности.

В промышленности для проведения гетерогенных реакций используют кипящий слой, чтобы увеличить поверхность соприкосновения реагирующих веществ, подвод исходных веществ и отвод продуктов. Например, при производстве серной кислоты с помощью кипящего слоя проводят обжиг колчедана; в органической химии с применением кипящего слоя проводят каталитический крекинг нефтепродуктов и регенерацию (восстановление) вышедшего из строя (закоксованного) катализатора.

Химическая термодинамика дает сведения о возможности протекания реакции, но важно знать и скорость того или иного процесса. Химическая кинетика – это учение о скорости химических реакций, их механизме и закономерностях протекания во времени. Для определения скорости химической реакции надо знать не только начальное и конечное состояние системы, но и путь по которому протекает реакция, поэтому получить кинетические закономерности намного сложнее, чем термодинамические.

Скорость химической реакции показывает число химических взаимодействий, приводящих к образованию продуктов реакции в единицу времени в единице объема (для жидкой среды) или на единице поверхности, если процесс идет с участием твердого вещества. Отношение изменения концентрации реагирующих веществ к конечному (измеренному) промежутку времени называют средней скоростью.

V ср = ± ∆С / ∆t = ± (C конечное /С начальное) / (t конечное /t начальное), моль/(л∙c)

Если C конечное меньше, чем С начальное, то в выражении используют знак «-», если больше, то «+».

Истинная скорость - отношение изменения концентрации реагирующих веществ к бесконечно малому промежутку времени.

V ист = ± dС / dt, моль/(л∙c) – в системе СИ.

В медицине используются и другие единицы измерения скорости реакции, например, СОЭ – скорость оседания эритроцитов. Она измеряется высотой столбика эритроцитов, осевших в капилляре за час (норма ≈ 5 мм/час). Существует специальная дисциплина о кинетических закономерностях распределения лекарственных препаратов в организме – фармакокинетика. Она изучает распределение лекарств во времени, процессы всасывания, время метаболизма (вывода), связь между концентрацией и величиной терапевтического эффекта.

Влияние концентрации на скорость химической реакции.

Влияние концентрации на скорость химической реакции определяется законом действующих масс – при постоянной температуре скорость данной реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях равных их стехиометрических коэффициентов.

aA + bB ↔ cC + dD

V пр = К пр ∙ [A] a ∙ [B] b

V обр = К обр ∙ [С] с ∙ [D] d

К – константа скорости реакции показывает число эффективных соударений (тех, что привели к реакции) в расчете на 1 моль реагирующих веществ. К зависит от температуры и природы вещества, но не зависит от концентрации.

В момент равновесия скорости прямой и обратной реакции равны.

К пр ∙ [A] a ∙ [B] b = К обр ∙ [С] с ∙ [D] d

К пр / К обр = ([С] с ∙[D] d) / ([A] a ∙[B] b) = К с – константа равновесия

Возьмем конкретную реакцию: N 2 + 3H 2 = 2NH 3 , тогда К с = 2 / [ H 2 ] 3 .

В уравнении закона действующих масс самой трудной для определения величиной является константа скорости. Для ее определения надо знать следующие понятия: порядок реакции и молекулярность.

Молекулярность определяется числом молекул, одновременным взаимодействием которых в момент столкновения осуществляется химическое превращение.

    Мономолекулярная: J 2 = 2J.

    Бимолекулярная: 2NO = N 2 O 2 .

    Тримолекулярная: Cl 2 + 2NO = 2NOCl

Показатель степени называется порядком по данному компоненту или частный порядок. Сумма частных порядков по всем компонентам – общий порядок.

Молекулярность и порядок совпадают только в одностадийных процессах. Они не совпадают, когда одно из реагирующих веществ взято в избытке и поэтому не участвует в определении порядка. Например:

СН 3 СООС 2 Н 5 + Н 2 О избыток ↔ СН 3 СООН + С 2 Н 5 ОН, V пр = К пр ∙ [СН 3 СООС 2 Н 5 ] ∙ [Н 2 О], бимолекулярная реакция первого порядка.

Если реакция проходит в несколько стадий, то порядок определяется по самой медленной – лимитирующей стадии.

    Для реакций первого порядка (разложение лекарственных средств).

К пр = 1/t ∙ ln(C o (х)/C(х))

t – время реакции, с.

С о (х) – начальная концентрация, моль/л.

С(х) – концентрация в момент t, моль/л.

    Для реакций второго порядка.

К пр = 1/t ∙ (1/C(х) – 1/C o (х))

Мы постоянно сталкиваемся с различными химическими взаимодействиями. Сгорание природного газа, ржавление железа, скисание молока - далеко не все процессы, которые подробно изучаются в школьном курсе химии.

Для протекания одних реакций требуются доли секунд, а для некоторых взаимодействий нужны дни и недели.

Попробуем выявить зависимость скорости реакции от температуры, концентрации, иных факторов. В новом образовательном стандарте на данный вопрос отводится минимальное количество учебного времени. В тестах единого государственного экзамена есть задания на зависимость скорости реакции от температуры, концентрации и даже предлагаются расчетные задачи. Многие старшеклассники испытывают определенные сложности с поиском ответов на эти вопросы, поэтому подробно проанализируем данную тему.

Актуальность рассматриваемого вопроса

Информация о скорости реакции имеет важное практическое и научное значение. К примеру, в конкретном производстве веществ и продуктов от данной величины напрямую зависит производительность аппаратуры, стоимость товаров.

Классификация протекающих реакций

Существует прямая зависимость между агрегатным состоянием исходных компонентов и продуктов, образующихся в ходе гетерогенные взаимодействия.

Под системой принято подразумевать в химии вещество либо их совокупность.

Гомогенной считают такую систему, которая состоит из одной фазы (одинакового агрегатного состояния). В качестве ее примера можно упомянуть смесь газов, несколько различных жидкостей.

Гетерогенной является система, в которой реагирующие вещества находятся в виде газов и жидкостей, твердых тел и газов.

Существует не только зависимость скорости реакции от температуры, но и от того, в какой фазе используются компоненты, вступающие в анализируемое взаимодействие.

Для однородного состава характерно протекание процесса по всему объему, что существенно повышает его качество.

Если исходные вещества находятся в разных фазовых состояниях, в таком случае максимальное взаимодействие наблюдается на границе раздела фаз. К примеру, при растворении активного металла в кислоте, образование продукта (соли) наблюдается только на поверхности их соприкосновения.

Математическая зависимость между скоростью процесса и различными факторами

Как выглядит уравнение зависимости скорости химической реакции от температуры? Для гомогенного процесса скорость определяется количеством вещества, которое вступает во взаимодействие либо образуется в ходе реакции в объеме системы за единицу времени.

Для гетерогенного процесса скорость определяется через количество вещества, реагирующего либо получаемого в процессе на единице площади за минимальный промежуток времени.

Факторы, влияющие на скорость химической реакции

Природа реагирующих веществ - одна из причин разной скорости протекания процессов. Например, щелочные металлы при комнатной температуре образуют с водой щелочи, причем процесс сопровождается интенсивным выделением газообразного водорода. Благородные металлы (золото, платина, серебро) не способны к подобным процессам ни при комнатной температуре, ни при нагревании.

Природа реагирующих веществ - тот фактор, который учитывают в химической промышленности, чтобы повысить рентабельность производства.

Выявлена зависимость между концентрацией реагентов и быстротой протекания химической реакции. Чем она будет выше, тем больше частиц будет сталкиваться, следовательно, процесс будет протекать быстрее.

Закон действующих масс в математическом виде описывает прямо пропорциональную зависимость между концентрацией исходных веществ и быстротой протекания процесса.

Он был сформулирован в середине девятнадцатого века русским химиком Н. Н. Бекетовым. Для каждого процесса определяется константа реакции, которая не связана ни с температурой, ни с концентрацией, ни с природой реагирующих веществ.

Для того чтобы ускорить реакцию, в которой участвует твердое вещество, нужно измельчить его до порошкообразного состояния.

При этом происходит возрастание площади поверхности, что позитивно сказывается на быстроте протекания процесса. Для дизельного топлива применяют специальную систему впрыска, благодаря чему при соприкосновении ее с воздухом скорость процесса сгорания смеси углеводородов существенно возрастает.

Нагревание

Зависимость скорости химической реакции от температуры объясняется молекулярно-кинетической теорией. Она позволяет провести расчет количества соударений между молекулами реагентов при определенных условиях. Если вооружиться подобной информацией, то при обычных условиях все процессы должны протекать мгновенно.

Но если рассмотреть конкретный пример зависимости скорости реакции от температуры, оказывается, что для взаимодействия необходимо сначала разорвать химические связи между атомами, чтобы из них образовались новые вещества. Это требует существенных затрат энергии. Какова зависимость скорости реакции от температуры? Энергия активации определяет возможность разрыва молекул, именно она характеризует реальность процессов. Ее единицами измерения является кДж/моль.

При недостаточном показателе энергии столкновение будет малоэффективным, поэтому оно не сопровождается образованием новой молекулы.

Графическое представление

Зависимость скорости химической реакции от температуры можно представить графически. При нагревании число столкновений между частицами возрастает, что способствует ускорению взаимодействия.

Как выглядит график зависимости скорости реакции от температуры? По горизонтали откладывается энергия молекул, а по вертикали указывается число частиц, имеющих высокий энергетический запас. Графиком является кривая, по которой можно судить о скорости протекания конкретного взаимодействия.

Чем больше будет отличие энергии от среднего показателя, тем дальше располагается от максимума точка кривой, и меньший процент молекул имеет такой запас энергии.

Важные аспекты

Можно ли записать уравнение зависимости константы скорости реакции от температуры? Ее повышение отражается на увеличении скорости процесса. Такая зависимость характеризуется определенной величиной, называемой температурным коэффициентом скорости процесса.

Для любого взаимодействия выявлена зависимость константы скорости реакции от температуры. В случае ее повышения на 10 градусов происходит увеличение скорости процесса в 2-4 раза.

Зависимость скорости гомогенных реакций от температуры можно представить в математическом виде.

Для большинства взаимодействий при комнатной температуре коэффициент находится в диапазоне от 2 до 4. К примеру, при значении температурного коэффициента 2,9 рост температуры на 100 градусов ускоряет процесс почти в 50000 раз.

Зависимость скорости реакции от температуры легко можно объяснить разной величиной энергии активации. Минимальную величину она имеет при проведении ионных процессов, которые определяются только взаимодействием катионов и анионов. Многочисленные эксперименты свидетельствуют о мгновенном протекании подобных реакций.

При высоком значении энергии активации лишь незначительное количество столкновений между частицами будет приводить к осуществлению взаимодействия. При среднем значении энергии активации, реагенты будут взаимодействовать со средней скоростью.

Задания на зависимость скорости реакции от концентрации и температуры рассматриваются только на старшей ступени обучения, часто вызывают у ребят серьезные затруднения.

Измерение быстроты протекания процесса

Те процессы, которые нуждаются в существенной энергии активации, предполагают первоначальный разрыв либо ослабление связей между атомами в исходных веществах. При этом происходит их переход в некое промежуточное состояние, именуемое активированным комплексом. Он является неустойчивым состоянием, довольно быстро распадается на продукты реакции, процесс сопровождается выделением дополнительной энергии.

В простейшем варианте активированный комплекс является конфигурацией атомов с ослабленными старыми связями.

Ингибиторы и катализаторы

Проанализируем зависимость скорости ферментативной реакции от температуры среды. Такие вещества осуществляют функцию ускорителей процесса.

Сами они не являются участниками взаимодействия, их количество после завершения процесса остается без изменений. Если катализаторы способствуют увеличению скорости реакции, то ингибиторы, напротив, замедляют этот процесс.

Суть этого заключается в образовании промежуточных соединений, в результате чего и наблюдается изменение быстроты протекания процесса.

Заключение

В мире ежеминутно происходят разнообразные химические взаимодействия. Как установить зависимость скорости реакции от температуры? Уравнение Аррениуса является математическим объяснением связи константы скорости и температуры. Оно дает представление о тех значениях энергии активации, при которых возможно разрушение либо ослабление связей между атомами в молекулах, распределение частиц в новые химические вещества.

Благодаря молекулярно-кинетической теории можно предсказывать вероятность протекания взаимодействий между исходными компонентами, рассчитывать скорость протекания процесса. Среди тех факторов, которые оказывают воздействие на скорость реакции, особое значение имеет изменение температурного показателя, процентной концентрации взаимодействующих веществ, площадь поверхности соприкосновения, присутствие катализатора (ингибитора), а также природа взаимодействующих компонентов.



Copyright © 2024 Образовательный портал - HappyWorldSchool.