Географические поля земли. Физические поля земли

Гравитационное поле Земли с высокой точностью описывается законом всемирного тяготения Ньютона. Движение жидкостей, а также возникающие в твердых объектах напряжения, вызываемые циклическим изменением действующих на них гравитационных сил. Так, океанские приливы на Земле, запаздываемые ежедневно на 50 минут, возникают из-за изменения суммарного гравитационного действия Солнца и Луны, которое подвержено суточным, месячным и годичным вариациям, обусловленным вращением Земли, движением Луны по орбите вокруг Земли и движением Земли вокруг Солнца. Деформация за счет приливных сил Земли достигает 30см, Луны 40 см, водная поверхность поднимается до 1 метра, а в заливе Фапти (Атлантический океан) до 18 метров.

Ускорение свободного падения над поверхностью Земли определяется как гравитационной, так и центробежной силой, обусловленной вращением Земли. Зависимость ускорения свободного падения от широты приближенно описывается формулой g = 9,78031 (1+0,005302 sin2) m/c 2 , где m -масса тела.

Магнитное поле (рис. 4.) над поверхностью Земли складывается из постоянной (или меняющейся достаточно медленно) «главной» и переменной частей; последнюю обычно относят к вариациям магнитного поля. Наличие расплавленного металлического ядра приводит к появлению магнитного поля и магнитосферы Земли. Магнитосфера Земли определяется магнитным полем и его взаимодействием с потоками заряженных частиц космического происхождения (с солнечным ветром). Магнитосфера Земли с дневной стороны простирается до 8-14 R , с ночной - вытянута, образуя магнитный хвост Земли в несколько сотен R ; в магнитосфере находятся радиационные пояса. Измерения со спутников показали, что Земля является интенсивным источником радиоволн в километровом диапазоне, хотя такие волны генерируются высоко и на уровне земной поверхности не обнаружены. Магнитный дипольный момент Земли, равный 7,98·10 25 единиц СГСМ, направлен примерно противоположно механическому, хотя в настоящее время магнитные полюсы несколько смещены по отношению к географическим. Их положение, впрочем, меняется со временем, за геологические промежутки времени, по палеомагнитным данным, обнаруживаются даже магнитные инверсии, то есть обращения полярности. Нынешнюю полярность Земля приобрела 12 тысяч лет (по другим источникам 750 тыс.лет) назад, а в среднем каждые 250 тыс.лет (500 тыс.лет по другим источникам) меняется полярность, а иногда в 2-4 раза быстрее. Некоторые ученые утверждают, что возможно скоро полярность изменится.

Рис. 4. Магнитное поле Земли.

В первом приближении магнитное поле Земли подобно полю намагниченного стержня (диполя), который смещен относительно центра Земли к Тихому океану и наклонен к земной оси. В настоящее время это смещение составляет 451 км, а наклон равен 11°. Сила и форма геомагнитного поля постепенно меняются, причем масштаб времени этих изменений составляет годы. Интенсивность геомагнитного поля обозначается векторной величиной F или B, а единицами измерения являются гаусс (Гс), тесла (Т) или гамма (г) (1 тесла = 10000 гаусс; 1 гамма = 1 нанотесла= 10 -5 гаусс.) Направление поля в любой точке земной поверхности может быть описано двумя углами: 1) наклонением I , т.е. углом между горизонтальной плоскостью и вектором поля (угол считается положительным, когда поле направлено вниз); 2) склонением D, т.е. азимутом - углом, измеряемым от направления на север к востоку или западу на горизонтальной плоскости.


Положение магнитных полюсов Земли на 1985г:

Северный магнитный полюс – 77 о 36" с.ш.; 102 о 48" з.д.

Южный магнитный полюс – 65 о 06" ю.ш.; 139 о 00" в.д.

Положение геомагнитных полюсов на 1985г:

Северный геомагнитный полюс – 78 о 48" с.ш.; 70 о 54" з.д.

Южный геомагнитный полюс – 78 о 48" ю.ш.; 109 о 06" в.д.

Напряженности магнитного поля на северном и южном магнитных полюсах равны соответственно 0,58 и 0,68 Э, а на геомагнитном экваторе -около 0,4 Э.

Приборы Центрального военно-технического института Сухопутных войск (ЦНИВТИ СВ) зафиксировали в начале 2002 года, что магнитный полюс Земли сместился на 200 км. По мнению ученых, аналогичное смещение магнитных полюсов произошло и на других планетах Солнечной системы по видимому по причине, что Солнечная система проходит "определенную зону галактического пространства и испытывает влияние со стороны других космических систем, находящихся рядом". "Переполюсовка" повлияла на ряд процессов, происходящих на Земле. Так, "Земля через свои разломы и так называемые геомагнитные точки сбрасывает в космос избыток своей энергии, что не может не сказаться как на погодных явлениях, так и на самочувствии людей". Кроме того избыточные волновые процессы, возникающие при сбросе энергии Земли, влияют на скорость вращения нашей планеты. По данным Центрального военно-технического института, "примерно каждые две недели эта скорость несколько замедляется, а в последующие две недели наблюдается определенное ускорение ее вращения, выравнивающее среднесуточное время Земли". Смещение магнитного полюса Земли не влияет на географические полюса планеты, то есть точки Северного и Южного полюсов остались на месте.

Геомагнитное поле Земли и радиационные пояса. Выше ионосферы расположена магнитосфера Земли или геомагнитное поле (заполнено плазмой), которое экранирует поверхность Земли от потоков космических лучей и является геомагнитной ловушкой для заряженных частиц, источником которых являются космические лучи, солнечный ветер (особенно во время солнечных бурь). Она заполнена частицами высоких энергий, образующими радиационные пояса Земли. Частицы, захваченные в геомагнитную ловушку, совершают колебательные движения из одного полушария в другое, двигаясь вдоль силовых линий, одновременно прецессируя вокруг них и дрейфуя по долготе из-за неоднородности геомагнитного поля. Время колебаний частиц составляет от 10-3 до 10-1с.

Радиационные пояса – внутренние области планетных магнитосфер, в которых собственное магнитное поле планеты удерживает заряженные частицы (протоны, электроны), обладающие большой кинетической энергией. В радиационных поясах частицы под действием магнитного поля движутся по сложным траекториям из Северного полушария в Южное и обратно. У Земли обычно выделяют внутренний и внешний радиационные пояса. Внутренний радиационный пояс Земли имеет максимальную плотность частиц (преимущественно протонов) над экватором на высоте 3–4 тыс. км, внешний электронный радиационный пояс – на высоте ок. 22 тыс. км. Радиационный пояс - источник радиационной опасности при космических полетах. Мощными радиационными поясами обладают Юпитер и Сатурн.

Электрическое поле (рис. 5.) над поверхностью Земли в среднем имеет напряженность около 100 В/м и направлено вертикально вниз – это так называемое «поле ясной погоды», но это поле испытывает значительные (как периодические, так и нерегулярные) вариации.

Рис. 5. Электрическое поле над поверхностью Земли.

Две кольцеобразные области вокруг Земли с высокой концентрацией высокоэнергичных электронов и протонов, которые были захвачены магнитным полем планеты. Пояса были обнаружены первым американским искусственным спутником Земли "Эксплорер-1", запущенным 31 января 1958 г. Пояса названы по имени Джеймса Ван Аллена - физика, руководившего экспериментом на "Эксплорере-1". Внутренний пояс Ван Аллена лежит над экватором на высоте около 0,8 земных радиусов. Во внешнем поясе область наибольшей концентрации находится на высоте от 2 до 3 земных радиусов над экватором, а обширная область, простирающаяся от внутреннего пояса до высоты 10 земных радиуса, содержит протоны и электроны более низкой энергии, которые, по-видимому, принесены в основном солнечным ветром. Поскольку магнитное поле Земли отклоняется от оси вращения планеты, внутренний пояс опускается вниз к поверхности в Южной части Атлантического океана, недалеко от побережья Бразилии. Эта Южноатлантическая аномалия представляет потенциальную опасность для искусственных спутников. В 1993 г. в пределах внутреннего пояса Ван Аллена была обнаружена область, содержащая частицы, которые проникли туда из межзвездного пространства.

Сила тяжести - равнодействующая притяжения массы Земли и центробежной силы от вращения планеты. В экваториальных широтах она равна в среднем 978 галл, а в полярных возрастает до 983 галл, что связано как с фигурой Земли, так и с уменьшением с широтой центробежной силы.

О значении силы тяжести для географической оболочки выше говорилось в разных аспектах. Обобщим это, поскольку гравитационное поле Земли для ее природы имеет чрезвычайно важное значение.

  1. Силами тяготения, превышающими силы сцепления, создана фигура Земли. В практике решается обратная задача: потенциал силы тяжести используется при изучении фигуры Земли.
  2. Земное тяготение уплотнило внутреннее вещество Земли и, независимо от его химического состава, сформировало плотное ядро.
  3. Ядро вместе с вращением Земли создало магнитосферу, роль которой для биосферы огромна.
  4. Величина земного тяготения такова, что удерживает газовую оболочку, позволяя ускользать только легким элементам - гелию и водороду. Частично благодаря этому между земной атмосферой и Вселенной наблюдается газовое несоответствие: во Вселенной на водород приходится 93%, а в атмосфере Земли его ничтожно мало.
  5. Атмосферное прикрытие обеспечивает существование гидросферы; в противном случае вода мгновенно испарилась бы и улетучилась.
  6. Давление глубинных масс наряду с радиоактивным распадом порождает тепловую энергию - источник внутренних (эндогенных) процессов, перестраивающих литосферу.
  7. Сила тяжести обусловливает стремление земной коры к изостатическому равновесию. Изостазия была обнаружена при изучении распределения силы тяжести. Горные хребты создают на поверхности дополнительную массу и должны вызывать увеличение силы тяжести, пропорциональное массе горной страны. В океанах 4-5 км сложены водой с плотностью около 1,0 г/см 3 , поэтому здесь сила тяжести должна быть меньше, чем в горах. Низменные равнины материков занимают промежуточное положение и должны иметь силу тяжести среднего значения. Измерения показали, что фактически сила тяжести на одной и той же параллели везде - на море, на низменной суше, в горных странах - в общем одинакова. Это значит, что в горах она меньше нормальной, или, как принято считать, здесь обнаруживается отрицательная гравиметрическая аномалия, на море сила тяжести больше расчетной, или ее аномалия положительная, на низменностях фактическая величина ее близка к теоретической, т. е. аномалии нет. Такое распределение силы тяжести и ее аномалии объясняют изостазией.
  8. Астеносфера - размягченный теплом слой, допускающий движение литосферы,- тоже функция силы тяжести, поскольку расплавление вещества происходит при благоприятном соотношении количества тепла и величины сжатия - давления.
  9. Шаровая фигура гравитационного поля определяет два основных вида форм рельефа на земной поверхности - конически и равнинные. Они соответствуют двум универсальным форма симметрии - конической и билатеральной (И. И. Шафранский). Над каждым малым и большим участком земной поверхности существует конусообразное поле земного тяготения. Оно отпечатывается на всех телах, которые растут на Земле. Если тело растет вверх, или, что то же самое, вниз, то оно приобретает форму, близкую к конической (горные вершины, вулканы, карстовые воронки, песчаные формы рельефа, деревья и т. д.). Если тело растет горизонтально, то сила тяжести делает его листообразным (дельты, аккумулятивные равнины, поверхности выравнивания и т. д.). Переход конических форм в плоские образует склоны. Весь рельеф литосферы в сущности склоновый.
  10. Сила тяжести обусловливает гравитационный тектогенез - формирование структур земной коры и вообще движение масс литосферы под действием силы тяжести. Так как развитие рельефа есть перемещение вещества, то сила тяжести в нем играет одну из решающих ролей.
  11. Земное тяготение определяет верхний предел высоты горных хребтов. Вздымание складок земной коры не может быть выше 9 км, ибо этому препятствует сила тяжести.
  12. Сочетание гравитационного поля и конкретных тел на Земле создает диспропорциональность земного пространства. Несколько примеров раскроет его сущность. На малых телах, вплоть д горных хребтов, действуют силы сцепления, а на больших - горных странах, литосфере в целом, а тем более на всей Земле - силы тяготения, с чем и связана изостазия. В условиях земного гравитационного поля каждый тип животного имеет наиболее удобные для него размеры, изменение которых повлекло бы изменение и формы. Если длину, высоту и ширину животного уменьшить или увеличить в 10 раз, то масса его изменится в 1000 раз, а поверхность в 100 раз. Понятно, что при этом должно перестроиться все тело. Соотношение объемов, размеров и масс определяет парусность пыльцы и семян растений и способы их перенесения.
  13. Сила тяжести в сочетании с размерами тел определяет силу поверхностного натяжения воды, с которой связаны поднятие ее по капиллярам и, следовательно, одна из сторон водного режима почвы.
  14. Направление силы тяжести вниз, к центру Земли, помогает животным удерживать вертикальное положение.
  15. В течении воды вниз и, следовательно, в работе рек гравитационное поле играет второстепенную роль. Первостепенное значение имеет энергия солнечной радиации, которая вызывает испарение воды и подъем пара на материки и в горы.

Министерство образования и науки

Российский Государственный Университет

нефти и газа имени И.М.Губкина

Кафедра геологии

Курсовая работа

НА ТЕМУ: Геофизические поля Земли

тепловой поле магнитный зондирование

Введение

Тепловое поле Земли

1 Параметры теплового поля Земли

2 Применение терморазведки

Поле силы тяжести

1 Параметр поля силы тяжести

2 Интерпретация и задачи, решаемые гравиметрической разведкой

3 Применение гравиметрической разведки

Магнитное поле Земли

1 О происхождении магнитного поля Земли

2 Главные элементы магнитного поля

3 Магнитометрическая, или магнитная, разведка

4 Намагниченность горных пород и их магнитные свойства

5 Применение магниторазведки для картирования, поисков и разведки полезных ископаемых

Электромагнитное поле Земли

1 Электромагнитные поля

2 Электромагнитные свойства горных пород

3 Электромагнитная разведка

4Особенности применения электромагнитных зондирований

Список литературы

тепловой поле магнитный зондирование

Введение

Геофизика - комплекс наук, исследующих физическими методами строение Земли. Геофизика в широком смысле изучает физику твердой Земли (земную кору, мантию, жидкое внешнее и твердое внутреннее ядро), физику океанов, поверхностных вод суши (озёр, рек, льдов) и подземных вод, а также физику атмосферы (метеорологию, климатологию, аэрономию).

К геофизическим полям относятся:

Тепловое поле земли.

Поле силы тяжести.

Магнитное поле Земли.

Электромагнитное поле Земли.

1. Тепловое поле Земли

Земля относится к группе холодных небесных тел. В космическое пространство она излучает меньше энергии, чем получает извне. На ее поверхность воздействует огромный энергетический поток, поступающий от Солнца. По данным М.Д.Хуторского, он составляет 5,5 *10 24 Дж в год, что в 10 тыс. раз больше собственного теплового поля Земли. Около 40% этой энергии отражается в космическое пространство. Лишь 2% энергии идет на разрушение горных пород.

О том, что в недрах Земли температура значительно выше, чем в приповерхностном слое, ученые знали давно, основываясь на таких фактах, как вулканическая деятельность, наличие гидротермальных источников. Все это свидетельствует о собственных энергетических ресурсах Земли.

.1 Параметры теплового поля Земли

А) геотермический градиент.

Б) геотермическая ступень.

В) коэффициент теплопроводности.

Г) теплоемкость.

Д) плотность теплового потока.

Е) величина теплогенерации.

Геотермический градиент характеризует изменение температуры горных пород на единицу расстояния. В зависимости от того, изменяется температура по площади или в вертикальном разрезе, выделяют горизонтальный и вертикальный геотермический градиент.

Величина обратная геотермическому градиенту называется геотермической ступенью. Она характеризует длину интервала пород, в пределах которого температура повышается на один градус.

По данным Б.Гуттенберга, геотермический градиент в разных точках земного шара отличается. Его максимальное значение более чем в 15 раз превосходит минимальное, что свидетельствует о различной эндогенной активности регионов и разной теплопроводности слагающих их горных пород.

Способность пород проводить тепло характеризует коэффициент теплопроводности (К), который равен количеству тепла, переносимого через единицу поверхности за единицу времени при градиенте температур, равном единице.

Наиболее полную характеристику тепловому полю дает плотность теплового потока, который равен произведению геотермического градиента на коэффициент теплопроводности.

В среднем на планете плотность теплового потока составляет 75 мВт/мм, не отличаясь значительно для континентов и океанов. Отклонения теплового потока от средних значений получили название аномалий, которые делятся на региональные и локальные.

.2 Применение терморазведки

В различных природных условиях получаемые геотермические профили и карты служат для оконтуривания многолетнемерзлых и талых горных пород с различными тепловыми свойствами; изучения динамики подземных вод; прогноза приближения забоя выработок обводненным зонам и решения других задач.

2. Поле силы тяжести

.1 Параметр поля силы тяжести

Основным измеряемым параметром в поля силы тяжести является ускорение свободного падения g, которое определяется либо абсолютно, либо относительно.

Гравиметрическая или гравитационная разведка (сокращенно гравиразведка) - это геофизический метод исследования земной коры и разведки полезных ископаемых, основанный на изучении распределения аномалий поля силы тяжести Земли вблизи земной поверхности, акваториях, в воздухе. Поле силы тяжести обусловлено в основном Ньютоновским притяжением Землей всех тел, обладающих массой. Так как Земля сферически неоднородна, да еще вращается, то поле силы тяжести на земной поверхности непостоянно. Изменения эти малы и требуют высокочувствительных приборов для их изучения. Основными измеряемыми параметрами гравитационного поля являются ускорение силы тяжести и градиенты (изменения ускорения по разным направлениям). Величины параметров поля силы тяжести зависят, с одной стороны, от причин, обусловленных притяжением и вращением Земли (нормальное поле), а с другой стороны - от неравномерности изменения плотности пород, слагающих земную кору (аномальное поле). Эти две основные причины изменения силы тяжести на Земле послужили основой двух направлений гравиметрии: геодезической гравиметрии и гравитационной разведки.

.2 Интерпретация и задачи, решаемые гравиметрической разведкой

В результате гравиразведки получаются карты и графики аномалий Буге ∆, на которых выделяются латеральные плотностные неоднородности горных пород, залегающих на разных глубинах. Положительным аномалиям соответствуют более плотные, а отрицательным - менее плотные породы, но всегда они представляют собой суперпозицию гравитационных полей, обусловленных аномалосоздающими объектами разных по глубине структурных этажей.

Интерпретация данных гравиразведки бывает качественной и количественной и сопровождается геологическим истолкованием результатов. При качественной интерпретации выделение аномалий ведется визуально или статистическими приемами. При количественной, расчетной интерпретации определяются местоположение эпицентров (проекции на земную поверхность) аномалосоздающих объектов, глубины залегания их центров, формы, размеры, избыточные плотности.

.3 Применение гравиметрической разведки

Гравиразведка применяется для решения широкого круга задач, связанных с исследованием глубинного строения Земли, по крайней мере, верхней мантии и земной коры, с региональным тектоническим районированием суши и океанов, поисково-разведочными работами на многие полезные ископаемые, изучением геологической среды.

Так же гравиразведка применяется для поисков и разведки нефтяных структур, угольных бассейнов, рудных и нерудных полезных ископаемых.

Рассмотрим краткую характеристику этих областей применения гравиразведки. Гравиразведка применяется для разведки следующих нефтяных структур: соляных куполов, антиклинальных складок, рифтовых массивов, куполовидных платформенных структур.

Наиболее благоприятны для разведки соляные купола, поскольку соль отличается низкой плотностью (ρ=2,1г/см 3) по сравнению с окружающими породами и резкими крутыми склонами. Соляные купола, находящиеся в Урало-Эмбенском районе, Днепрово-Донецкой впадине и других районах, выделяются изометрическими интенсивными отрицательными аномалиями, по которым можно судить не только об их местоположении и форме, но и о глубине залегания.

Антиклинальные складки выделяются вытянутыми изолиниями аномалий чаще положительного, реже отрицательного знака в зависимости от плотности пород, залегающих в ядре складок. Интерпретация результатов качественная, изредка количественная.

Многие месторождения нефти и газа приурочены к рифтовым массивам, но разведка последних методом гравиразведки является задачей нелегкой. Для разведки рифтовых известняков среди осадочных терригенных пород используется анализ как региональных, так и локальных аномалий, причем рифтовые известняки выделяются, как правило, положительными аномалиями.

Высокоточная гравиразведка применяется для изучения режима эксплуатации месторождений нефти и газа, а также подземных газохранилищ. В связи с разведкой угольных месторождений гравиметрия применяется как для определения границ угольного бассейна, так и для непосредственных поисков отдельных месторождений и пластов угля, отличающихся низкой плотностью (ρ≤2г/см 3).

Гравиразведка применяется в комплексе с другими геофизическими методами и для разведки рудных и нерудных ископаемых, причем она привлекается как для крупномасштабного картирования и выявления тектонических зон и структур, благоприятных залеганию тех или иных ископаемых, так и для непосредственных поисков и разведки месторождений. Поэтому для их обнаружения гравиразведка с успехом применяется.

3. Магнитное поле Земли

.1 О происхождении магнитного поля Земли

Происхождение магнитного поля Земли пытаются объяснить различными причинами, связанными с внутренним строением Земли. Наиболее достоверной и приемлемой гипотезой, объясняющей магнетизм Земли, является гипотеза вихревых токов в ядре. Эта гипотеза основана на том установленном геофизическом факте, что на глубине 2900 км под мантией (оболочкой) Земли находится "жидкое" ядро с высокой электрической проводимостью. Благодаря так называемому гиромагнитному эффекту и вращению Земли во время ее образования могло возникнуть очень слабое магнитное поле. Наличие свободных электронов в ядре и вращение Земли в таком слабом магнитном поле привело к индуцированию в ядре вихревых токов. Эти токи, в свою очередь, создают (регенерируют) магнитное поле, как это происходит в динамомашинах. Увеличение магнитного поля Земли должно привести к новому увеличению вихревых потоков в ядре, а последнее - к увеличению магнитного поля и т.д. Процесс подобной регенерации длится до тех пор, пока рассеивание энергии вследствие вязкости ядра и его электрического сопротивления не скомпенсируется добавочной энергией вихревых токов и другими причинами.

.2 Главные элементы магнитного поля

В любой точке земной поверхности существует магнитное поле, которое определяется полным вектором напряженности T. Вдоль вектора T устанавливается подвешенная у центра тяжести магнитная стрелка. Проекция этого вектора на горизонтальную поверхность и вертикальное направление, а также углы, составленные этим вектором с координатными осями, носят название главных элементов магнитного поля (рис. 1).

Если ось х прямоугольной системы координат направить на географический север, ось у - на восток, а ось z - по отвесу вниз, то проекция полного вектора T на ось z называется вертикальной составляющей и обозначается z. Проекция полного вектора T на горизонтальную плоскость называется горизонтальной составляющей (H). Направление H совпадает с магнитным меридианом. Проекция H на ось х называется северной (или южной) составляющей; проекция H на ось y называется восточной (западной) составляющей. Угол между осью х и составляющей H называется склонением и обозначается D. Принято считать восточное склонение положительным, западное - отрицательным. Угол между вектором T и горизонтальной плоскостью называется наклонением и обозначается J. При наклоне вниз северного конца стрелки наклонение называется северным (или положительным), при наклоне южного конца стрелки - южным (или отрицательным). Взаимосвязь полученных элементов магнитного поля Земли выражается с помощью формул:


Семь элементов земного магнитного поля можно выразить через любые три составляющие. При магнитной разведке измеряют лишь одну-две составляющие поля (как правило, Z, H или T).

Рис. 1. Элементы земного магнитного поля

Распределение значений элементов магнитного поля на земной поверхности обычно изображается в виде карт изолиний, т.е. линий, соединяющих точки с равными значениями того или иного параметра. Изолинии склонения называются изогонами, изолинии наклонения - изоклинами, изолинии H или Z - соответственно изодинамами H или Z. Карты строят на 1 июля и называют их картами эпохи такого-то года. Например, на рис.2 приведена карта эпохи 1980 г.

Рис. 2 Полная напряженность магнитного поля Земли для эпохи 1980 г. Изолинии Т проведены через 4 мкТл (из книги П.Шарма "Геофизические методы в региональной геологии")

3.3 Магнитометрическая, или магнитная, разведка

(сокращенно магниторазведка) - это геофизический метод решения геологических задач, основанный на изучении магнитного поля Земли. Магнитные явления и наличие у Земли магнитного поля были известны человечеству еще в глубокой древности. Так же давно эти явления использовались людьми для практической деятельности (например, применение компаса). Со второй половины ХIX в. измерение напряженности магнитного поля проводилось для поисков магнитных руд.

От других методов геофизики магниторазведка отличается наибольшей производительностью (особенно аэромагниторазведка). Магниторазведка является наиболее эффективным методом поисков и разведки железорудных месторождений.

.4 Намагниченность горных пород и их магнитные свойства

Региональные и локальные магнитные аномалии зависят от интенсивности намагничения пород J как современным (индуцированная намагниченность J i), так и древним (остаточная намагниченность J r) магнитными полями, т.е. это векторная сумма J=J i +J r . Индуцированная намагниченность любого образца породы равна J i =kT, где k (каппа) - его магнитная восприимчивость, а T - полный вектор постоянного геомагнитного поля. Однако этот же образец несет в себе информацию о той намагниченности, которая существовала в момент образования породы и сложным образом менялась до настоящего времени. Ее называют остаточной (J r). Вместе с отношением Q=J r /J i остаточная намагниченность количественно характеризует свойство породы сохранять или менять намагниченность за весь свой возраст, может быть, составляющий многие миллионы лет.

Примером материалов и руд, обладающих сильным магнитным полем даже при экранировке от земного магнитного поля, являются искусственные магниты или естественные образцы магнетита, у которых намагниченность устойчива за счет остаточной.

.5 Применение магниторазведки для картирования, поисков и разведки полезных ископаемых

Поиски и разведка железорудных месторождений - задача, лучше всего решаемая магниторазведкой. Исследования начинаются с проведения аэромагнитных съемок масштаба 1: 100 000. Железорудные месторождения выделяются очень интенсивными (сотни и тысячи гамм) аномалиями Z(T). Детализация аномалий проводится наземной съемкой. При этом ведется не только качественная, но и количественная интерпретация, т.е. оценивается глубина залегания магнитных масс, простирания, падения, размеры железосодержащих пластов, а иногда по интенсивности намагничения даже качество руды.

Наиболее благоприятны для разведки магнетитовые руды, менее интенсивными аномалиями выделяются гематитовые месторождения.

4. Электромагнитное поле Земли

.1 Электромагнитные поля

К естественным переменным электромагнитным полям относятся квазигармонические низкочастотные поля космической (их называют магнитотеллурическими) и атмосферной (грозовой) природы ("теллурики" и "атмосферики").

Происхождение магнитотеллурических полей объясняется воздействием на ионосферу Земли потока заряженных частиц, посылаемых космосом (в основном, корпускулярным излучением Солнца). Вызываемые разной активностью Солнца и солнечным ветром периодические (11-летние), годовые, суточные вариации магнитного поля Земли и магнитные бури создают возмущения в магнитосфере и ионосфере. Вследствие индукции в Земле и возникают магнитотеллурические поля. В целом эти поля инфранизкой частоты (от 10 -5 до 10 Гц). В теории показано, что на таких частотах скин-эффект проявляется слабо, поэтому магнитотеллурические поля проникают в Землю до глубин в десятки и первые сотни километров. Наиболее устойчивыми, постоянно и повсеместно существующими в утренние и дневные часы, особенно летом и в годы повышенной солнечной активности являются короткопериодичные колебания (КПК) с периодом от единиц до ста секунд. Поля иных периодов наблюдаются реже.

Измеряемыми параметрами являются электрические (E x ; E y) и магнитные (H x ; H y ; H z) составляющие напряженности магнитотеллурического поля. Их амплитуды и фазы зависят, с одной стороны, от интенсивности вариации теллурического и геомагнитного полей, а с другой, от удельного электрического сопротивления пород, слагающих геоэлектрический разрез.

По измеренным взаимно перпендикулярным электрическим и магнитным составляющим можно рассчитать \rho однородного полупространства (нормальное поле) с помощью следующей формулы, полученной в теории электроразведки:

ρ=αT*(E x /H g) 2


где T - период колебания, α - коэффициент размерности. Он равен 0,2, если T измерено в с, E x в мВ/км, H в нанотеслах (нТл), ρ в Ом*м. Над неоднородной средой полученное по этой формуле УЭС называется кажущимся (КС или ρ z).

Происхождение естественных переменных полей атмосферной природы связано с грозовой активностью. При каждом ударе молнии в Землю (по всей поверхности Земли в среднем ежесекундно число молний равно примерно 100) возбуждается электромагнитный импульс, распространяющийся на большие расстояния. В целом под воздействием гроз в верхних частях Земли повсеместно и всегда существует слабое грозовое поле, которое называют шумовым. Оно состоит из периодически повторяемых импульсов (цугов), носящих квазисинусоидальный характер с преобладающими частотами от 10 Гц до 10 кГц и напряженностью по электрической составляющей в доли мВ/м.

Средний уровень поля "атмосфериков" подвержен заметным суточным и сезонным вариациям, т.е. вектора напряженности электрической (E) и магнитной (H) составляющих не остаются постоянными по амплитуде и направлению. Однако средний уровень напряженности (E ср, H ср) за время в течение десятка секунд зависит от удельного электрического сопротивления слоев геоэлектрического разреза, над которым ведутся наблюдения. Таким образом, измеряемыми параметрами "атмосфериков" являются различные составляющие E ср и H ср.

4.2 Электромагнитные свойства горных пород

К основным электромагнитным свойствам горных пород относятся: удельное электрическое сопротивление (ρ), электрохимическая активность (α), поляризуемость (ƞ), диэлектрическая (ɛ) и магнитная (µ) проницаемости. Параметрами ρ, ɛ, µ, а также частотой поля определяется коэффициент поглощения поля средой.

4.3 Электромагнитная разведка

(точнее электромагнитная разведка) объединяет физические методы исследования геосфер Земли, поисков и разведки полезных ископаемых, основанные на изучении электрических и электромагнитных полей, существующих в Земле либо в силу естественных космических, атмосферных, физико-химических процессов, либо созданных искусственно.

Электромагнитные свойства геологических сред, вмещающей среды, пластов, объектов, а также геометрические параметры последних служат основой для построения геоэлектрических разрезов. Геоэлектрический разрез над однородным по тому или иному электромагнитному свойству полупространством принято называть нормальным, а над неоднородным - аномальным. На выделении аномалий и основана электроразведка.

Вследствие многообразия используемых полей, их частотно-временных спектров, электромагнитных свойств горных пород электроразведка отличается от других геофизических методов большим количеством методов (свыше 50). По физической природе их можно сгруппировать в методы естественного переменного электромагнитного поля, поляризационные (геоэлектрохимические), сопротивлений, индукционные низкочастотные, высокочастотные, сверхвысокочастотные, биогеофизические.

4.4 Особенности применения электромагнитных зондирований

Несмотря на то, что все методы электромагнитных зондирований предназначены для расчленения горизонтально и полого слоистых сред, их геологические возможности разные и зависят, прежде всего от проектируемой глубинности и решаемых задач.

С помощью электромагнитного зондирования решаются следующие задачи:

ü определение мощности и состава покровных и коренных осадочных отложений, глубины залегания фундамента, что очень важно для структурно-геологического объемного картирования;

ü оценка геометрических параметров и физических свойств массивов горных пород, представляющих большой интерес для инженерно-геологического, мерзлотно-гляциологического, гидрогеологического картирования;

ü поиски пластовых, как правило, нерудных полезных ископаемых. При структурных исследованиях на суше и морях до глубин 5 - 10 км.

5. Вывод

На основе исследуемого материала, можно сделать вывод, что геофизические поля Земли широко используются при изучении геологического строения отдельных участков земной коры, поисков и разведки месторождений полезных ископаемых.

6. Список литературы

1. Геофизические методы исследования / Под ред. В.К.Хмелевского. - М.: Недра, 1988.

Геофизические методы исследования скважин. Справочник геофизика. - М.: Недра, 1883.

Бондаренко В.М., Демура Г.В., Ларионов А.М. Общий курс геофизических методов разведки. - М.: Недра, 1986.

Гравиразведка. Справочник геофизика. - М.: Недра, 1990.

Магниторазведка. Справочник геофизика. - М.: Недра, 1990.

Сейсморазведка. Справочник геофизика в двух книгах. - М.: Недра, 1990.

Электроразведка. Справочник геофизика в двух книгах. - М.: Недра, 1989.

Шарма П. Геофизические методы в региональной геологии. - М.: Мир, 1989.

Форма Земли – геоид- не имеет правильной геометрической формы, Поэтому там, где это допустимо, поверхность геоида заменяется приближенными матем-ми моделями, в кач-ве которых принимает-ся в одних случаях земной сфероид, в других – земной шар. Земной сфероид – эллипсоид вращения получается вращением эллипса вокруг его малой оси b, совпадающей с осью вращения Земли, причем центр эллипсоида совмещается с центром Земли. Особенности строения фигуры Земли полностью учитываются при математической обработке высокоточных геодезических измерений. Ввиду малости сжатия при решении многих задач за фигуру Земли с достаточной для практических целей точностью можно принимать сфе-ру, равновеликую по объему земному эллипсоиду. Размеры которо-го: экваториальный радиус -6378 км, полярный радиус -6357 км, ср радиус 6371, длина меридиана 40009 км, длина экватора -40077 км, его диаметр 12756 км, поверх-ть З – 510 млн км2, ср выс суши 875 м, ср глуб МО 3800м.

Движение З-ли. Принято учитывать орбитальное и суточное вращения, движение системы Земля-Луна, изменение скорости вращения З-ли, а также колебание оси вращения. Орбитальное движение: движется по эллиптической орбите, в одной из фокусов которой расположено Солнце, скорость - 29,8 км\с, период - год. Скорость движения тем выше, чем меньше радиус - вектор (расстояние от Земли до Солнца). Оно в течении года меняется незначительно: в перигелии (начало января) оно уменьшается, в афелии увеличивается. Земная ось наклоненная по отношению к плоскости орбиты под углом 66 33. С наклоном земной оси связано наличие тропиков и полярных кругов. Время, за кото-рое земная ось описывает полный конус, называется прецессион-ным ритмом. Суточное вращение Земли вокруг оси против часовой стрелки, если смотреть с северного полюса. Следствия: 1) смена дня и ночи; 2) деформация фигуры Земли (полярное сжатие - нарастание центробежной силы); 3)существование силы Кориолиса (чем больше угловая скорость вращения, тем больше сила Корио-лиса); 4) суперпозиция центробежной силы и силы тяготения, да-ющая силу тяжести (центробежная - от нуля на полюсах до мак-симального значения на экваторе; максимально значение силы тя-жести на полюсе).

Движение сис-мы Земля-Луна. Луна создаёт приливное торможение суточного вращения нашей планеты. При-ливное торможение, вызываю замедление вращения, уменьшает полярную сплюснутость и силу Кориолиса, т.е. влияет на циркуля-цию атмосферы и океаносферы, от чего зависят условия климата. Изменение скорости вращения Земли. Неравномерность суточного вращения - среднемесячное отклонение. Движение полюсов Земли. Если ось вращения не совпадает с осью фигуры Земли, то должно происходить движение географических полюсов вокруг полюсов фигуры с периодом 305 звёздных суток. Непрерывное смещение оси вращения внутри тела Земли - прецессии, (через изменение центробежной силы) Перемещение полюсов в пространстве - нута-ция. Вследствие нутации происходит перераспределение масс воз-духа при смене сезонов. Изменение наклона уровня Мирового оке-ана, интенсивность океанических течений, характер взаимодей-ствия между океаном и атмосферой, изменение атмосферной цир-куляции.

Физические поля Земли включают гравитационное, магнитное, и тепловое поля. Они охватывают не менее 2 млн. км. Эти пределы определяются гравитационными и электромагнитными по-лями. Гравитац поле составляет 2сферы: 1. Сфера Хилла, радиус этой сферы составляет около 1,5 млн км и определяет расстояние, на котором могут двигаться тела, оставаясь спутниками Земли.2. Сфера, радиус которой 260тыс км, в пределах которого земное притяжение превышает солнечное. Гравитац-ные взаимодействия Солнца, а также и других планет на земную орбиту вызывают вековые возмущения колебательного характера, которые существенно влияют на состояние биосферы и человека. Гравит поле определяет силу тяжести на поверхности. Ускорение свобод-ного падения на З различ-ся в зависимости от распределения плот-ности пород, неровности поверхности для конкретной местности. Ср. для всей пов-ти 9,8м/с. Магнитное поле простирается на расстояние около 10 земных радиусов (100-200 тыс. км). Напряженность магнитного поля на поверхности Земли неодинакова. В полярных областях она достигает 8.103 -9.103 А/м, а на экваторе напряжен-ность уменьшается до 5.103 А/м. По мере удаления от Земли напряженность уменьшается пропорционально кубу расстояния. Тепловое поле Земля имеет как всякое нагретое тело. Факторы, обусловливающие нагревание Земли, делятся на внешние (солнечная энергия, приливное трение, космическое излучение) и внутренние (теплопередача из глубины Земли, термальные воды, вулканизм, землетрясения, хозяйственная деятельность человека). Основным источником теплового поля является Солнце. Температура на поверхности Земли колеблется в достаточно больших пределах.

План лекции

1.1.Форма и основные параметры Земли.

1.2. Гравитационное поле Земли.

1.3. Тепловое поле Земли.

1.4. Магнитное поле Земли.

Геология как наука, изучающая, прежде всего, нашу планету и ее верхнюю каменную оболочку, не оставляет без внимания и окружающей ильный мир - Вселенную. Это обусловлено тем, что в строении и Земли имеются определенные черты сходства и различия с планетами; некоторые геологические процессы непосредственно связаны с космическими явлениями.

Земля - типичная планета Солнечной системы – характеризуется наличием хорошо развитых внутренних и внешних оболочек.

1.1. Форма и основные параметры Земли

Под фигурой, или формой Земли, понимают форму ее твердого тела, образованную поверхностью материков и дном морей и океанов. Форма планеты определяется ее вращением, соотношением сил притяжения и центробежной силы, плотностью вещества и его распределением в теле

Геодезические измерения показали, что упрощенная фирма Земли приближается к ЭЛЛИПСОИДУ ВРАЩЕНИЯ (СФЕРОИДУ). Полярный радиус Rn 6356,8 км, экваториальный - 6378,2 км, разница между радиусами составляет 21,4 км.

Детальные измерения показали, что Земля имеет более сложную форму. Эта фигура, свойственная только Земле, получила название ГЕОИДА. В любой точке геоида вектор силы тяжести перпендикулярен к его поверхности, которая может быть получена продолжением поверхности Мирового океана под континентами. Именно поверхность геоида принимается за базовую при отсчете высот в топографии, геодезии, маркшейдерии.

Геоид и сфероид не совпадают, и расхождения между положением их поверхностей достигает 160 км (в СССР 100 м). По наиболее точным последним данным, установлено, что Земля имеет грушевидную форму (т.е. сердцевидного) трехосного эллипсоида.

Масса Земли составляет 5,977 10 21 т, объем 1,083 млрд.км 3 , площадь 510 млн. км 2 . Средняя плотность Земли равна 5,52 г/см 3 . Установлено, что внешняя, каменная часть земной коры имеет среднюю плотность 2,8 г/см 3 . Таким образом, чтобы общая плотность равнялась 5,52, внутренняя часть Земли должна быть плотнее, чем наружная. Возрастание плотности с глубиной можно объяснить различиями в составе и той огромной силой, с которой внешние части Земли давят на внутренние. Предполагается, что внутренне ядро имеет плотность около 13 г/см 3 ,что, по-видимому соответствует состоянию металлического железа при этом давлении.

1.2. Гравитационное поле Земли

Физические поля, создаваемые планетой в целом и отдельными изолированными телами, определяются совокупностью присущих каждому физическому объекту свойств. Важное значение имеет изучение геофизических полей при исследовании физических свойств горных пород в образцах и массиве. Изучение свойств и интерпретация полученных данных должны базироваться на знании общих и локальных закономерностей строения физических полей Земли.

Огромная масса Земли является причиной существования сил

притяжения, которые воздействуют на вое тела и предметы, находящиеся на ее поверхности. Пространство, в пределах которого проявляются силы притяжения Земли, называется полем силы тяжести или гравитационным полем (лат."гравитас"-тяжесть).Оно отражает характер распределения масс в недрах и тесно связано с фигурой Земли. Для каждой точки земной поверхности характерна своя величина силы тяжести, в центре Земли сила тяжести равна нулю.

Сила тяжести численно равна равнодействующей силы притяжения и центробежной силы Р, действующих на единицу массы вещества

В системе СGS величина силы тяжести выражается в галлах (см/сек В практике часто используются одной тысячной долей гала-миллигалом. Сила тяжести зависит от высотного положения местности, так как при этом изменяется расстояние до

центра Земли. Поэтому измерения силы тяжести принято приводить к одному

уровню, например уровню геоида или эллипсоида. Значение силы тяжести на поверхности Земли возрастает от экватора к полюсам с 978,049 до 963,235 гал. Среднее значение силы тяжести на поверхности геоида 981 гал.

величина силы тяжести зависит не только от высотного положения, но и от географической широты местности. На нее оказывает влияние и неравномерное распределение масс в недрах Земли. По этой причине возникают местные отклонения в значениях силы тяжести от теоретически вычисленных ее значений. Такие отклонения называются гравитационными аномалиями.

Различают положительные и отрицательные гравитационные аномалии. Положительные наблюдаются в том случае, когда в недрах земной коры залегают плотные массы (железные руды); отрицательные вызываются залеганиями легких масс (гипс, калийная соль) .Гравитационные аномалии выявляются с помощью гравиметров, маятниковыми приборами. По результатам измерений составляют гравиметрические карты, на которых с помощью изолиний показываются аномалии силы тяжести в миллигалах.

Изменения силы тяжести могут быть вызваны некоторыми явлениями, известными из астрономии, например замедлением или ускорением вращении Земли вокруг своей оси, изменениями фигуры и плотности Земли.

1.3. Тепловое поле Земли

Тепловое поле Земли образуется за счет внешних и внутренних источников. Главным источником внешней энергии является солнечное излучение. Лучистая энергия Солнца, получаемая земной поверхностью за год составляет5,44*10Дж. Около 55 % ее поглощается атмосферой, растительным покровом, почвой. Остальное количество энергии отражается в космос.

Источниками внутреннего тепла Земли являются следующие: радиоактивный распад элементов; энергия гравитационной дифференциации вещества; остаточное тепло и т.д

Получаемое солнечное тепло непосредственно нагревает горные породы и проникает лишь на небольшую глубину. Температура поверхности слоев изменяется в течение суток, сезона и года. С глубиной амплитуды колебания температуры убывают: сначала исчезает влияние суточных колебаний температуры воздуха, затем сезонных и, наконец, годовых. На некоторой глубине температура пород остается постоянной годы - пояс постоянной температуры. Выше него располагаются слои многолетних, сезонных и суточных колебаний.

Глубина залегания пояса постоянных температур меняется с широтой местности и с изменением теплофизических свойств в горных пород. В приэкваториальных областях пояс постоянной температуры достигнет 1-2 м, в средних широтах 20-30 м (в Москве - 20 м).

Постоянная температура этого пояса примерно равна средней годовой температуре приземного слоя данной местности (для Москвы +4,2°С, для Парижа +I8 ).Если среднегодовая температура местности ниже 0 , то атмосферные осадки и подземные воды превращаются в лед. Таково основное условие образования "вечной мерзлоты".

Начиная с пояса постоянных температур, отмечается постоянное повышение температуры пород с глубиной, которые характеризуется геотермической ступенью и геотермическим градиентом. ГЕОТЕРМИЧЕСКАЯ СТУПЕНЬ - численно равна количеству метров, на которое нужно углубиться для того, чтобы температура пород поднялась на 1 и имеет размерность м/град. ГЕОТЕРМИЧЕСКИЙ ГРАДИЕНТ - величина обратная и численно равен числу градусов, на которое повышается температура горных пород при углублении на 100 м (м/град).

Геотермическая ступень в среднем принимается равной 33 м/град, но ее значение в различных пунктах колеблется в широких пределах от 2 до 250 м/град. Часто величина геотермической ступени значительно отклоняется на различных глубинах одного и того же пункта. Это зависит: от различной теплопроводности и условий залегания горных пород, подземных вод, удаленности от морей и океанов, рельефа местности, геохимических условий.

Наибольшая температура пород в подземных горных выработках равна С и наблюдалась в медных рудниках Магны (США) на глубине 1200 м. Температура пород в шахтах Донбасса на глубине 800-1000 превышает , а на глубине 1545 м достигает 56,3 . Для освоения залежей полезных ископаемых, залегающих на больших глубинах и в районе многолетней мерзлоты, необходимо регулировать тепловой режим глубоких шахт и рудников.

1.4. Магнитное поле Земли

Вокруг земного шара и внутри его существуют магнитные поля. По данным космических исследований, оно простирается за пределы планеты на расстояние, превышающее десятикратный радиус Земли, образуя магнитосферу. Установлена сложная ассиметричная внешняя форма магнитосферы, непрерывно изменяющаяся по форме и силе. Со стороны Земли, освещенной Солнцем, магнитосфера значительно сжата, а с противоположной стороны - вытянута с образованием магнитного шлейфа.

Ассиметричность магнитосферы обусловлена воздействием солнечного ветра (космического излучения).

По данным I960 г граница магнетизма располагается на высоте 93 тыс.км. Величина магнитного поля Земли убывает примерно до высоты 43 тыс.км пропорционально кубу расстояния. В околоземном пространстве, за пределами земного магнетизма, существует магнитное поле межпланетного пространства. Природа магнитного поля Земли в настоящее время окончательно не выяснена. Известно, что воздействие на него процессов, происходящих в высоких слоях атмосферы, невелико и не превышает 6 %. На этом основании полагают, что магнитное поле связано с процессами, протекающими в глубоких недрах Земли. Магнитное поле влияет на ориентировку ферромагнитных минералов (магнетита, ильменита, гематита) в горных породах. Сильнее всего реагируют на магнитное поле ультраосновные и основные изверженнее (базальты, габбро) и красноцветные пески. Осадочного генезиса.

Полюса магнитного поля Земли не совпадают с географическими полюсами.

Основные характеристики магнитного поля следующие:

МАГНИТНОЕ СКЛОНЕНИЕ - угол между осью магнитной стрелки магнитным меридианов и географическим меридианом.

МАГНИТНОЕ НАКЛОНЕНИЕ - угол наклона магнитной стрелки к горизонту.

СИЛА магнитного поля Земли выражается векторной величиной - МАГНИТНЫМ НАПРЯЖЕНИЕМ. Единицей измерения магнитной напряженности является одна стотысячная доля эрстеда, называемая гаммой ().

Отклонения элементов магнитного поля Земли называются магнитными аномалиями. Они обусловлены или залеганием больших магнитных масс (железные руды) или же нарушениями однородности геологического строения.

Самой крупной магнитной аномалией в мире, вызванной залеганием больших магнитных масс является КМА.

Изучение магнитного поля Земли широко используется для поисков месторождений полезных ископаемых, в том числе нефтяных и газовых.



Copyright © 2024 Образовательный портал - HappyWorldSchool.