Биология в лицее. Iii

Половое размножение существует почти у всех растений и животных. Оно связано с образованием высокоспециализированных половых клеток - гамет. Гаметы формируются из диплоидных клеток путем специального типа клеточного деления - мейоза, в результате которого в клетках исходное число хромосом уменьшается вдвое (из диплоидного становится гаплоидным).

Несмотря на принципиальное сходство гаметогенеза у самых различных видов организмов, конкретные формы мейоза чрезвычайно разнообразны.

Мужские гаметы созревают в мужских половых железах - семенниках; этот процесс называется сперматогенезом. Женские гаметы созревают в яичниках в процессе овогенеза. В половых железах различают: зону размножения, зону роста и зону созревания; в зоне созревания гаметы окончательно формируются путем мейоза.

Мейоз происходит в результате двух последовательных делений родоначальной диплоидной клетки. Каждое из них включает четыре фазы. Все фазы первого мейотического деления обозначают цифрой I, а все фазы второго деления - цифрой II. Передпрофазой I в клетках, удваивается ДНК и в мейоз клетки вступают с хромосомным набором 2n4с.

В профазе I хромосомы вначале имеют вид тонких нитей, а затем утолщаются. Гомологичные хромосомы сближаются, в пунктах касания они перекрещиваются и обмениваются гомологичными участками- этот процесс называется кроссинговером (и представляет один из источников генотипической комбинативной изменчивости). Каждая хромосома в результате самоудвоения состоит из двух хроматид и называется унивалентой, а после сближения двух гомологичных хромосом (двух унивалент) образуются тетрады (биваленты). Как и в профазе митоза, в клетке в этот период формируется веретено деления, центриоли отходят к полюсам, оболочка ядра распадается, а тетрады движутся к центру клетки.

В метафазе I тетрады выстраиваются в плоскости экватора, гомологичные хромосомы в области центромер отходят друг от друга, оставаясь соединенными в области плеч. Нити веретена прикрепляются к центромерам гомологичных хромосом. Клетка вступает в третью фазу - анафазу I, во время которой нити веретена увлекают униваленты к противоположным полюсам. При этом одна из двух гомологичных хромосом случайно оказывается на одном полюсе, вторая - на другом. Именно в этот период происходит уменьшение вдвое (редукция) числа хромосом и их случайное перераспределение в будущих гаметах. В заключительной фазе клетка вступает в телофазу I. Таким образом, в итоге мейоза образуются две клетки, содержащие лишь по одной из двух гомологичных хромосом, каждая из которых состоит из двух хроматид. Хромосомы в результате кроссинговера обмениваются своими участками и несут, таким образом, перекомбинированный наследственный материал. Телофаза I длится недолго, и клетка переходит в интерфазу (краткую по времени), после которой наступает второе мейотическое деление. Во время интерфазы в отличие от митоза в клетках не происходит синтеза ДНК.

В профазе II по периферии ядра располагаются нитевидные хромосомы - униваленты, образуется веретено деления, хромосомы, приближаются к плоскости экватора и клетка вступает метафазу II. В анафазе II хроматиды расходятся и увлекаются нитями веретена от плоскости экватора к противоположным полюсам. Вслед за этим наступает телофаза II, во время которой хромосомы истончаются, образуя нити, и у полюсов формируются ядра дочерних клеток. В итоге из двух клеток мейоза I в телофазе мейоза II образуются четыре дочерние зрелые гаметы, жаждая из которых несет газплоидное число хромосом. Описанный процесс типичен для формирования мужских гамет. Образование женских половых клеток идет аналогично, но при овогенезе развивается лишь одна зрелая яйцеклетка, а три мелких редукционных тельца впоследствии отмирают.

Мейоз под микроскопом

Биологическое значение мейоза состоит в том, что:

1) образуются хромосомы обновленного генетического состава благодаря кроссинговеру между гомологичными хромосомами;
2) достигается наследственная разнородность гамет, так как во время первого мейотического деления из дары гомологичных хромосом в одну из двух гамет отходит материнская хромосома, в другую - отцовская;
3) после оплодотворения гаплоидные гаметы (1n1с) от отца и матери создают диплоидное ядро зиготы с числом хромосом, присущим данному виду.

Процессы сперматогенеза и овогенеза в принципе сходны, но между ними имеются и различия. В результате сперматогенеза образуется четыре сперматозоида, аовогенез завершается образованием одной яйцеклетки. Это обусловлено тем, что при первом и втором делениях созревания яйцеклетки не делятся пополам, а отделяют маленькие направительные, или редукционные, тельца. Направительные тельца несут полноценные хромосомные наборы, но практически лишены цитоплазмы и вскоре погибают. Биологический смысл образования этих телец заключается в необходимости сохранения в цитоплазме яйцеклетки максимального количества желтка, потребного для развития будущего зародыша.

Таблица Деление клеток (исходная клетка 2п 4с (n - хромосомы, с - хроматиды))

Тип деления Фазы Набор хромосом в
результате деления
(n - хромосомы,
с - хроматиды)
Число и качество
клеток, образую
щихся в резуль
тате деления
Клетки, где происходит
деление
Распро-странение среди
организмов
Митоз
(непрямое
деление)
Интерфаза
Профаза
Метафаза
Анафаза
Телофаза
2п 2с (дипло-идный), хромосомы
однохрома-тидные
Две дипло-идные
Сомати-
ческие (клетки
тела)
Все животные и расти
тельные организмы, кроме бактерий и синезеленых (прокариот)
Мейоз:
мейоз I (ре
дукцион-ное
деление)

Мейоз II
(митоти-ческое
деление)

Интерфаза
Профаза I
Метафаза I
Анафаза I
Телофаза I

Метафаза II
Анафаза II
Телофаза II

In (гапло-идный), хромосомы
двухро-
матидные

1n 1с (гапло-идный), хромосомы
однохро-матидные

Две гапло-идные

Две гапло-идные

Всего: четыре
гапло-идные
клетки

Половые клетки животных: при овогенезе
образуются четыре клетки: одна яйцеклетка и три направи-тельных тельца (отмира-
ющие); при
сперма-
тогенезе все
клетки образуют сперма-
тозоиды.
Сяюрообра-зующие
клетки растений: у семенных растений из четырех крупных спор три
отмирают, одна остается; мелкие споры все
остаются
Все животные и растения, кроме прокариот

Половые клетки (гаметы) развиваются в половых (генеративных) органах и играют важнейшую роль: обеспечивают передачу наследственной информации от родителей к потомкам. При половом размножении в результате оплодотворения происходит слияние двух половых клеток (мужской и женской) и образование одной клетки - зиготы , последующее деление которой приводит к развитию дочернего организма.

Обычно в ядре клетки содержатся два набора хромосом - по одному от одного и другого родителя - 2n (латинской буквой "n" обозначают одинарный набор хромосом). Такая клетка называется диплоидной (от греч. diploos - "двойной" и eidos - "вид"). Можно предположить, что при слиянии двух ядер во вновь образовавшейся клетке (зиготе) будут находиться уже не два, а четыре набора хромосом, которые при каждом последующем появлении зигот будут снова удваиваться. Представьте себе, какое количество хромосом накопилось бы тогда в одной клетке! Но такого в живой природе не происходит: число хромосом у каждого вида при половом размножении остается постоянным. Связано это с тем, что половые клетки образуются путем особого деления. Благодаря этому в ядро каждой половой клетки попадают не две (2n), а только одна пара хромосом (1n), т. е. половина из того, что было в клетке до ее деления. Клетки с одинарным набором хромосом, т. е. содержащие только половину каждой пары хромосом, называются гаплоидными (от греч. haploos - "простой", "одиночный" и eidos - "вид").

Процесс деления половых клеток, в результате которого в ядре оказывается вдвое меньше хромосом, называют мейозом (греч. meiosis - "уменьшение"). Уменьшение вдвое числа хромосом в ядре (так называемая редукция) происходит при формировании и мужских, и женских половых клеток. При оплодотворении путем слияния половых клеток в ядре зиготы вновь создается двойной набор хромосом (2n).

Мейоз имеет большое значение в живом мире. В процессе мейоза (в отличие от митоза) образуются дочерние клетки, которые содержат в два раза меньше хромосом, чем родительские клетки, но благодаря взаимодействию хромосом отца и матери всегда обладают новыми, неповторимыми комбинациями хромосом. Эти комбинации у потомства выражаются в новых сочетаниях признаков. Появляющееся множество комбинаций хромосом увеличивает возможность вида вырабатывать приспособления к изменяющимся условиям окружающей среды, что очень важно для эволюции.

С помощью мейоза образуются половые клетки с меньшим набором хромосом и с качественно иными генетическими свойствами, чем у родительских клеток.

Мейоз, или редукционное деление, - это сочетание двух своеобразных этапов деления клетки, без перерыва следующих друг за другом. Их называют мейозом I (первое деление) и мейозом II (второе деление). Каждый этап имеет несколько фаз. Названия фаз такие же, как фаз митоза. Перед делениями наблюдаются интерфазы. Но удвоение ДНК в мейозе происходит только перед первым делением.

В первой интерфазе (предшествующей первому делению мейоза) наблюдается увеличение размеров клетки, удвоение органоидов и удвоение ДНК в хромосомах.

Первое деление (мейоз I) начинается профазой I , во время которой удвоенные хромосомы (имеющие по две хроматиды) хорошо видны в световой микроскоп. В этой фазе одинаковые (гомологичные ) хромосомы, но происходящие из ядер отцовской и материнской гамет, сближаются между собой и "слипаются" по всей длине в пары. Центромеры (перетяжки) гомологичных хромосом располагаются рядом и ведут себя как единое целое, скрепляя четыре хроматиды. Такие соединенные между собой гомологичные удвоенные хромосомы называют парой или бивалентом (от лат. bi - "двойной" и valens - "сильный").

Гомологичные хромосомы, составляющие бивалент, тесно соединяются между собой в некоторых точках. При этом может происходить обмен участками нитей ДНК, в результате которого образуются новые комбинации генов в хромосомах. Этот процесс называют кроссинговером (англ. crossingover - "перекрест"). Кроссинговер может приводить к перекомбинации больших или маленьких участков гомологичных хромосом с несколькими генами или частей одного гена в молекулах ДНК.

Благодаря кроссинговеру в половых клетках оказываются хромосомы с иными наследственными свойствами в сравнении с хромосомами родительских гамет.

Явление кроссинговера имеет фундаментальное биологическое значение, так как увеличивает генетическое разнообразие в потомстве.

Сложностью процессов, происходящих в профазе I (в хромосомах, ядре), обусловливается наибольшая продолжительность этого этапа мейоза.

Возникновение многоклеточности сопровождается специализацией тканей организма: наряду с появлением соматических тканей (костная, мышечная, соединительная и т.д.) обособляется ткань, дающая начало половым клеткам, - генеративная ткань. Половое размножение возникло в процессе эволюции как высшая форма воспроизведения организмов, позволяющая многократно увеличивать численность потомства, и, что самое главное, половое размножение явилось необходимой предпосылкой возникновения многих форм наследственной изменчивости. Эти два фактора во многом способствовали естественному отбору наиболее приспособленных особей и тем самым существенно определяли скорость эволюционных преобразований.

При половом размножении растений и животных (в том числе и человека) преемственность между поколениями обеспечивается только через половые клетки - яйцеклетку и сперматозоид. Если бы яйцеклетка и сперматозоид обладали полным набором генетических характеристик (2n2с), свойственных клеткам тела, то при их слиянии образовался бы организм с удвоенным набором (4n4с). Например, в соматических клетках организма человека содержится 46 хромосом. Если бы яйцеклетка и сперматозоид человека содержали по 46 хромосом, то при их слиянии образовалась бы зигота с 92 хромосомами. В следующем поколении проявились бы потомки со 184 хромосомами и т.д.

Вместе с тем хорошо известно, что количество хромосом является строгой видовой характеристикой, а изменение их числа приводит либо к гибели организма на ранних этапах эмбрионального развития, либо обусловливает тяжелые заболевания. Таким образом, при образовании половых клеток должен существовать механизм, приводящий к уменьшению числа хромосом точно в два раза. Этим процессом является мейоз (от греч. meiosis - уменьшение).

Мейоз включает два последовательных деления. В результате первого деления происходит уменьшение числа хромосом в ядре ровно в два раза. Именно поэтому первое деление мейоза иногда называют редукционным делением, т. е. уменьшающим. Второе деление мейоза в основных чертах повторяет митоз и носит название вквационного (уравнительного) деления. Мейоз состоит из ряда последовательных фаз, в которых хромосомы претерпевают специфические изменения (рис. II.3). Фазы, относящиеся к первому делению, обозначаются римской цифрой I, а относящиеся ко вто-вому - цифрой II.

В каждом делении мейоза по аналогии с митозом различают ррофазу, метафазу, анафазу и телофазу.

В результате мейоза образуются четыре гаплоидные клетки - гаметы. На рисунке представлены три пары хромосом К первому делению относят изменения ядра от профазы I до телофазы I.

Профаза I имеет принципиальные отличия от профазы митоза. Она состоит из пяти основных стадий: лептотены, зиготены, пахитены, диплотены и диакинеза.

Самая ранняя стадия профазы I - лептотена. На этой стадии появляются тонкие перекрученные нити хромосом. Число видимых в световом микроскопе нитей равно диплоидному числу хроvосом. Двойственное строение хромосомных нитей (сестринские хроматиды) постепенно выявляется по мере усиления спирализации.

На стадии зиготены происходит взаимное притяжение (конъюгация) парных или гомологичных хромосом, одна из которых была привнесена отцовской половой клеткой, другая - материнской. В митозе подобного процесса нет. Конъюгировавглая пара хромосом называется бивалентом. В нем четыре хроматиды, но они еще не различимы под микроскопом.

Стадия пахитены - самая продолжительная стадия профазы первого деления. Дальнейшая спирализапия приводит к утолщению хромосом. Двойственное строение хромосом становится четко различимым: каждая хромосома состоит из двух хроматид, объединенных одной центромерой. Четыре хроматиды, объединенные попарно двумя центромерами, образуют тетраду. На стадии пахитены можно видеть ядрышки, прикрепленные к определенным участкам хромосом (области вторичных перетяжек).

В следующей стадии - диплотене - начинается процесс отталкивания друг от друга ранее конъюгировавшихся хромосом. Этот процесс начинается с области центромер. Точки соприкосновения иесестринских хроматид как бы сползают к концам хромосом, образуя Х-образные фигуры, называемые хиазмами. Образование хиазм сопровождается обменом гомологичных участков хроматид. Образование хиазм существенно увеличивает наследственную изменчивость благодаря появлению хромосом с новыми комбинациями аллелей за счет кроссинговера.

Последняя стадия профазы I - диакинез. В диакинезе усиливаются спирализация хромосом, уменьшается число хиазм вследствие их передвижения к концам хромосом. Биваленты перемещаются в экваториальную плоскость. Исчезают оболочка ядра и ядрышки. Окончательное формирование веретена деления завершает профазу I.

В метафазе I биваленты выстраиваются в экваториальной плоскости клетки, образуя метафазную пластинку. Хромосомы при этом сильно спирализованы - утолщены и укорочены. Число бивалентов вдвое меньше, чем число хромосом в соматической клетке организма, т.е. равно гаплоидному числу.

В анафазе I гомологичные хромосомы, каждая из которых костоит из двух сестринских хроматид, расходятся к противоположным полюсам клетки. В результате этого число хромосом в каждой дочерней клетке уменьшается ровно вдвое. При этом как «отцовская», так и «материнская» хромосомы бивалента с равной вероятностью могут попадать в любую из дочерних клеток.

Телофаза I очень короткая. Она характеризуется формированием новых ядер и ядерной мембраны.

Затем следует особый период - интеркинез. В интеркинезе в отличие от интерфазы митоза отсутствует 8-период и, следовательно, не происходит репликации ДНК и удвоения числа хромосом. Сестринские хроматиды перед профазой II уже удвоены.

За интеркинезом наступает второе мейотическое деление - эквационное, которое состоит из таких же фаз, как и митоз. Уже в начале второго мейотического деления клетка содержит 23 хромосомы, каждая из которых состоит из двух сестринских хрома-тид. В профазе II формируется новое веретено деления, в метафазе II хромосомы вновь располагаются в экваториальной плоскости клетки. Во время анафазы II за счет деления центромеры к полюсам расходятся сестринские хроматиды, и в телофазе II образуются дочерние клетки с гаплоидным числом хромосом.

Таким образом, диплоидная клетка, вступившая в мейоз, образует четыре дочерние клетки с гаплоидным набором хромосом.

Биологическое значение мейоза состоит в следующем.

1. Мейоз обеспечивает преемственность в ряду поколений организмов, размножающихся половым путем, в то время как митоз выполняет ту же задачу в ряду клеточных поколений.

2. Мейоз является одним из важнейших этапов процесса полового размножения.

3. В процессе мейоза происходит редукция числа хромосом от диплоидного числа (46 у человека) до гаплоидного (23).

4. Мейоз обеспечивает комбинативную наследственную изменчивость, являющуюся предпосылкой генетического разнообразия людей и генетической уникальности каждого индивида. Комбина-тивная генетическая изменчивость в процессе мейоза возникает в результате двух событий: случайного распределения негомологичных хромосом и кроссинговера, т. е. взаимного обмена гомологичных районов хроматид при образовании хиазм.

5. Мейоз называют делением созревания, поскольку формирование половых клеток (гамет) человека, как и других эукариот, связано с редукцией числа хромосом.

1. Дайте определения понятий.
Яйцеклетка – женская гамета.
Гаметы – репродуктивные клетки, имеющие гаплоидный набор хромосом и участвующие в половом размножении.
Гаметогенез – процесс созревания половых клеток, или гамет.
Мейоз – деление ядра эукариотической клетки с уменьшением числа хромосом в два раза.

2. Изобразите схематично половые клетки и подпишите их основные части.

3. В чем принципиальное отличие в строении яйцеклетки и сперматозоида?
Яйцеклетки крупные, неподвижные, с запасом питательных веществ, а сперматозоиды мелкие, подвижные, содержат митохондрии.

4. Закончите схему «Гаметогенез у человека».

5. Чем отличаются процессы гаметогенеза в женском и мужском организме?
В сперматогенезе кроме стадий размножения, роста и созревания, есть также стадия формирования, когда у сперматозоидов появляется жгутик.

6. Используя рисунок 59 в § 3.6, заполните таблицу.


7. Укажите черты сходства и различия митоза и мейоза.


8. Рассмотрите рисунок 60 на с. 118 учебника. Какое значение имеет перекрест хромосом и обмен гомологичными участками? На какой фазе мейоза он происходит?
В профазе 1 происходит конъюгация – процесс сближения гомологичных хромосом, и кроссинговер – обмен гомологичными участками при конъюгации. Этот процесс обеспечивает комбинативную генотипическую изменчивость вида.

9. Какова биологическая роль мейоза?
1) является основным этапом гаметогенеза;
2) обеспечивает передачу генетической информации от организма к организму при половом размножении;
3) дочерние клетки генетически не идентичны материнской и между собой (комбинативная генотипическая изменчивость вида).
4) благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом.

10. В чем биологический смысл неравномерного деления цитоплазмы и гибели одной из дочерних клеток на каждой стадии мейоза при образовании яйцеклетки?
В ходе овогенеза из одной диплоидной клетки образуется 4 гаплоидных. Но весь запас питательных веществ получает лишь одна (яйцеклетка), а остальные 3 роли не играют и отмирают (это полярные, или направительные тельца).
Яйцеклетке нужен запас питательных веществ, т.к. именно из нее развивается после оплодотворения зародыш. Полярные тельца служат лишь для удаления избытка генетического материала.

11. Установите соответствие между половыми клетками и признаками, характерными для них.
Признаки
1. Большое количество цитоплазмы
2. Подвижность
3. Очень плотная упаковка ДНК в ядре
4. Округлая форма
5. Содержит запас питательных веществ
6. Отсутствуют многие типичные органоиды
7. Относительно большие размеры
8. В головке находится акросома - органоид, содержащий ферменты для растворения оболочки гаметы противоположного пола
Половые клетки
А. Яйцеклетка

Б. Сперматозоид

12. Выберите правильные суждения.
1. В зоне роста хромосомный набор клеток - 2п.
2. В зоне созревания происходит мейотическое деление.
5. Профаза первого мейотического деления (профаза I) значительно длиннее, чем профаза митоза.
7. У женщины образование первичных половых клеток завершается еще в эмбриональном периоде.

13. Объясните происхождение и общее значение слова (термина), опираясь на значение корней, его составляющих.


14. Выберите термин и объясните, насколько его современное значение соответствует первоначальному значению его корней.
Выбранный термин – сперматозоид.
Соответствие – не только мужские, но и женские половые клетки имеют право называться «семенем», так как содержат генетический материал, что не было известно в древности.

15. Сформулируйте и запишите основные идеи § 3.6.
Гаметогенез – процесс образования половых клеток (гамет). Гаметы гаплоидны, в отличие от соматических клеток, что обеспечивается мейозом на стадии созревания их. Процесс образования сперматозоидов – сперматогенез, яйцеклеток – оогенез. В сперматогенезе есть 4 стадии, последняя (формирования) отсутствует при оогенезе.
Стадии мейоза похожи на стадии митоза, отличия в том, что при мейозе 2 есть последовательных деления, без интерфазы между ними, наблюдается конъюгация, образуются 4 гаплоидных половых клетки из 1 диплоидной.
Роль гаметогенеза и мейоза – развитие половых клеток, передача генетической информации от организма к организму, обеспечение комбинативной генотипической изменчивости вида. Также, благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом.



Copyright © 2024 Образовательный портал - HappyWorldSchool.